Quasar 2 – New Flare Stack Monitoring System

The new flare stack monitoring system from LumaSense Technologies is designed to monitor pilot flames and flared gases for elevated flare stacks. Additional applications include: Gas assist flares, Staged flares, and Offshore flares. Quasar 2 is available in “Basic” and “Advanced” models.

Safe flare operation and environmental protection require reliable and accurate flare pilot monitoring. Generally, all flare pilots are monitored with thermocouples. However, thermocouples fail due to thermal shock, extreme heat and vibrations during flaring events. The requirement for pilot monitoring beyond the normal life of pilot thermocouples has driven the market need for alternative methods and installation of redundant methods of pilot monitoring in addition standard pilot thermocouples. Regional flare governmental permitting rules driven by environmental protection, health and safety guidelines for global flare operation have had a large impact on the increasing market need for IR pilot monitoring systems.

The E²T Quasar 2 series are monitoring and detection instruments designed for continuous duty monitoring of pilot flame and flared gases from flares. The base system provides low-cost basic flare pilot monitoring capabilities. The advanced model has an intensity meter with 2 set points that allow monitoring of both the pilot and flaring status signals from the same unit. Additional add-on features are available for a configurable product to meet a wide range of client flare types, monitoring requirements and budget. High Resolution sight-through optical system and selection of various spot sizes enables the Quasar 2 system to be positioned as far as 1/4 mile (400 m) from the stack being monitored. Alignment on the target is accomplished through bead and notch aiming and signal amplitude in combination with a stable M-4 heavy duty swivel mount. Custom electronics adapt to target movement, varying luminosity and most climate conditions. The alarm delay circuit can be adjusted for a specific location or application, eliminating false alarms from temporary loss of signal due to intermittent flames, adverse weather and wind.

The system is complete with internal cooling base, air purge tube and swivel mount. An optional M-8 pedestal stand allows for easy stable system mounting. With over installations at over 550 petrochemical facilities worldwide, customers know they can trust LumaSense E²T line of petrochemical infrared sensors.

LumaSense Technologies, Inc.

Published on Aug 1, 2018

For more information, visit: https://info.lumasenseinc.com/q2

YouTube

Recommended Lighting Practices Collaboration

FORT DAVIS, Texas — The University of Texas at Austin’s McDonald Observatory has collaborated with the Permian Basin Petroleum Association (PBPA) and the Texas Oil and Gas Association (TXOGA) to reduce light shining into the sky from drilling rigs and related activities in West Texas. The excess light has the potential to drown out the light from stars and galaxies and threatens to reduce the effectiveness of the observatory’s research telescopes to study the mysteries of the universe.

“This partnership of PBPA and TXOGA with McDonald Observatory to protect dark skies in its vicinity is vital to the research of the universe taking place at McDonald,” said Taft Armandroff, director of the observatory.

The collaboration’s Recommended Lighting Practices document details best lighting practices for drilling rigs and other oilfield structures, including what types of lighting work best and how to reduce glare and improve visibility. These practices will increase the amount of light shining down on worksites, thus increasing safety while decreasing the amount of light pollution in the sky. Reducing excess light helps the observatory and also decreases electricity costs for the oil and gas producers.

The document specifically targets oil and gas operations in the seven counties with existing outdoor lighting ordinances surrounding the McDonald Observatory: Brewster, Culberson, Hudspeth, Jeff Davis, Pecos, Presidio and Reeves. However, the recommendations can be beneficial across the industry.

A new video that helps to introduce the recommendations to oil and gas companies is now available. It features the observatory’s Bill Wren explaining the importance of dark skies, and how lighting practices can both preserve dark skies and improve safety for oilfield workers. The video was produced with the support of the Apache Corporation, following the company’s extensive collaboration with observatory staff and implementation of these practices with their assets in the area. It is available to watch and share at: https://youtu.be/UnmwnO6CIR4

“For years, the PBPA and the McDonald Observatory have worked together on educating members of the Permian Basin oil and gas community about the Dark Skies Initiative and the possible impact lighting practices can have on the observatory’s work,” said PBPA President Ben Shepperd. “About two years ago, the PBPA board of directors agreed to support the creation of lighting recommendations. We decided a great way to educate members of the industry on how they could provide a positive impact on this issue was through the utilization of such recommended practices.

“So we began work with the observatory to publish recommended lighting practices and have since worked to educate our members and those outside the oil and gas industry on the recommendations through presentations, seminars, articles in magazines and newspapers, and even one-on-one conversations,” Shepperd said.

Recently, the Texas Oil and Gas Association joined the collaboration.

“The Texas Oil and Gas Association recognizes that production practices and protecting the environment are in no way mutually exclusive,” TXOGA President Todd Staples said. “The Recommended Lighting Practices collaborative effort allows for the oil and natural gas industry to continue the work vital to our economy and our future, and for the simultaneous reduction to our ecological footprint.”

In April, the observatory’s Dark Skies Initiative was named one of six Texan by Nature Conservation Wrangler projects for 2018. Texan by Nature, a Texas-led conservation nonprofit founded by former first lady Laura Bush, brings business and conservation together through select programs that engage Texans in the stewardship of land and communities.

The award will provide the observatory connections to technical expertise, industry support, publicity, and more for its Dark Skies Initiative.

“Our Conservation Wrangler program recognizes innovative and transformative conservation projects across the state of Texas,” said Joni Carswell, the organization’s executive director. “Each Conservation Wrangler project positively impacts people, prosperity and natural resources.”

— END —

Media Contacts:
Rebecca Johnson, Communications Manager
McDonald Observatory
The University of Texas at Austin
512-475-6763

Stephen Robertson, Executive VP
Permian Basin Petroleum Association
432-684-6345

Kate Zaykowski, Communications Director
Texas Oil and Gas Association
325-660-2274

Taylor Keys, Program Manager
Texan by Nature
512-284-7482

Castlen Kennedy, VP of Public Affairs
Apache Corporation
713-296-7189

Secrets of the Deep: The Stones Metocean Monitoring Project | Sustainability at Shell

Shell has opened up parts of its Stones Deepwater mooring line to universities and research institutions. The Stones Metocean Monitoring Project provides access to data – unreachable until now – helping to build scientific understanding of the Gulf of Mexico’s role in global climate and ocean circulation.

Transcript: https://s00.static-shell.com/content/…

Welcome to Shell’s official YouTube channel. Subscribe here to learn about the future of energy, see our new technology and innovation in action or watch highlights from our major projects around the world. Here you’ll also find videos on jobs and careers, motorsports, the Shell Eco-marathon as well as new products like Shell V-Power. If you have any thoughts or questions, please comment, like or share. Together we can #makethefuture

Visit our Website: http://www.shell.com/

Like us on Facebook: https://www.facebook.com/Shell/

Follow us on Instagram: https://www.instagram.com/shell/

Follow us on Twitter: https://twitter.com/shell

Look us up on Flickr: http://www.flickr.com/photos/royaldut…

Linkedin: https://www.linkedin.com/company-beta…

Published by Shell on Nov 29, 2017

YouTube

Case Study: Large E&P Operator in Permian Basin Uses ZerO2 to Reduce Emissions, Capture Full Value of Production Stream

Situation

A multinational exploration and production company with significant operations in the Permian Basin needed a solution to continue developing its oil and gas assets in compliance with stringent emissions standards and without increasing lease operating costs or reducing economic returns. The operator’s area of operation covers over 100,000 net acres reaching from the city of Midland in west Texas to the border of New Mexico. The company recently told the market it plans to invest heavily in the Permian Basin by 2020 to grow production significantly. To achieve its growth plan, the operator required a solution to proactively handle emissions of Volatile Organic Compounds (VOCs) from tank vapor gas and Nitrogen Oxides (NOx) produced when VOCs are burned using flares or combustors. Importantly, the solution needed to have a minimal impact on operating costs and not require significant capital investment.

Solution

The operator turned to EcoVapor for a solution to handle its emissions of VOCs and reduce or eliminate NOx while avoiding any adverse impact to operations, cash flow or financial returns. EcoVapor applied its ZerO2 oxygen removal technology in a staged rollout covering an initial five production pads. Born from EcoVapor’s proprietary vapor recovery technology, its patented ZerO2 systems offer operational flexibility, modularity, and reliability. ZerO2 units can be all-electric, using existing lease power or gensets, are skid mounted and have a small 4’x4’ footprint so they can be installed on any production pad. With no moving parts, ZerO2 units are extremely reliable.

The ZerO2 rollout proceeded as follows:

  • September 2017. Three ZerO2 units installed and run in parallel on the first production pad, handling over 1.0 MMcf per day of flash gas.

  • October 2017. Three more ZerO2 units installed on second production pad handling 800 Mcf per day of flash gas.

  • December 2017. Three additional ZerO2 units installed on third production pad handling an initial 750 Mcf per day. Additional development drilling and turning more wells to production increased production and in April 2018, two more ZerO2 units were installed to process flash gas volumes of up to 1.5 MMcf per day.

  • July 2018. Six ZerO2 units were installed on a fourth production pad with the capacity to process an expected 1.8 MMcf per day of flash gas.

 

Results

The ZerO2 solution gave the operator a scalable, efficient and reliable method to process rising flash gas volumes generated from the continued development of its Permian Basin asset position.

The multiple operational, economic and regulatory benefits of implementing the ZerO2 solution are summarized below:• Eliminate the flaring or combusting of flash gas by capturing 100% of tank vapors, as compared to typical efficiency levels of 80% for competing solutions.

  • Easily achieve compliance with current emissions standards and even more stringent regulations likely to be introduced by federal and state regulators in the future.

  •  Reduce Reid Vapor Pressure (RVP) by flashing gas at atmospheric pressure and capturing it before the oil is transported.

  • Generate incremental revenue and profits by capturing and selling rich, high-value tank vapor gas previously lost by flaring or combusting.

  • Improve the quality of sales gas by removing oxygen from the gas stream and ensuring consistent, ongoing production and revenue by avoiding the triggering of slam valve safeguards.

  • Maintain operational reliability by adopting the ZerO2 units, which have no moving parts and minimizes the impact on unexpected maintenance and repair costs.

This table summarizes the estimated emissions reductions based on installations made to date. Emissions reductions are estimated based on an 80% efficiency rate generally attributed to Vapor Recovery Tower technology. To put the impact of the total estimated emissions reductions in perspective, the reduction in VOC emissions is equivalent to
removing approximately over 28,000 passenger vehicles from the nation’s roads for a year, using per-vehicle estimates from the EPA’s publication Average Annual Emissions and Fuel Consumption for Gasoline-Fueled Passenger Cars and Light Trucks.

Based on the successful applications of the ZerO2 solution, the operator requested that EcoVapor design a larger unit to handle greater volumes of flash gas expected to be produced by its Permian Basin growth plan. These new units can each process 1.2 MMcfd and will be deployed in the second half of 2018.

Contact us today at 1.844.NOFLARE (844.663.5273) or [email protected] to see if ZerO2 is right for your operations and if you’re ready to Flare Less, Sell More.

Case Study Permian Basin

 

Study: Filtration a Viable Option for Produced Water from the Marcellus Shale

The rising production of natural gas from hydraulically fractured wells in Appalachia generates along with it contaminated produced water that must be carefully disposed of. Researchers at Pennsylvania State University say that producers would be wise to consider the environmental risks associated with the most commonly used disposal practice of underground injection, and instead adopt more environmentally friendly and sustainable innovations in water filtration.

The study, Sustainability in Marcellus Shale Development, published by Penn State’s College of Engineering in conjunction with Chevron, notes that produced and flowback water from the prolific Marcellus Shale in Pennsylvania is most commonly disposed of through injection into saltwater injection wells drilled far below the deepest known aquifer.

But although this method is the cheapest available and most frequently used, it brings with it the potential for surface spills and casing leaks that can contaminate freshwater, as well as the risk of activating dormant faults and causing earthquakes.

Disposing Fracked Water

“During the hydraulic fracturing process, water and chemicals are used to stimulate the fissures in the rock in order to extract the natural gas. Water is mixed with sand and other chemicals and then injected into the well. After creating cracks in the Marcellus Shale, flowback water, a brine solution with heavy metals and chemicals, quickly comes back. Typically, this flowback water is stored in tanks or pits before treatment, recycling, or disposal,” according to the report, co-written by Kyle Bambu, Mike Spero, and Harry Polychronopoulos.

The most common way to dispose of this produced water is by pumping it into saltwater disposal wells that are drilled hundreds below the deepest known aquifers. But Pennsylvania’s unique geology is not well suited for such wells. At the time the study was published in Fall 2016, there were 144,000 Class II injection wells in the US and only eight of them were Class II salt water disposal wells in Pennsylvania. These eight wells combined accepted 8,667 barrels per day of brine, while similar wells operated in Texas can each dispose of more than 26,000 b/d of brine.

According to the report, the average cost to dispose of one bbl of fluid can range from as low as 25¢/bbl if the oil company operates its own disposal well, to anywhere from 50¢/bbl to $2.50/bbl if a commercial saltwater disposal well is used. The cost of using disposal is further increased by the cost of transportation.

“In northern Pennsylvania, where commercial disposal wells aren’t plentiful, the brine water may have to be transported to Ohio or West Virginia. This can increase costs by $4.00 to $6.00 a barrel, bringing the net cost of disposal in the Marcellus Shale region to $4.50/bbl to $8.50/bbl,” the study said.

The use of underground disposal wells is not without risk, and frequent concerns include the potential for groundwater contamination and induced seismic activity. In Youngstown, Ohio, the researchers noted that a Class II disposal well for fracking wastewater was linked to seismic activity after it activated a previously unknown fault line. That well was blamed for 10 minor earthquakes, the largest of which is a magnitude of 3.9. A spate of earthquakes in Oklahoma in recent years has likewise been linked to the increased injection of water into disposal wells.

The need to dispose of produced water in Pennsylvania has become more pressing in recent years as natural gas production from the prolific Marcellus and neighboring Utica shales has taken off.  Data from the federal Energy Information (EIA) Administration show that output from the shale formations more than tripled Appalachian gas production from 7.8 billion cubic feet per day in 2012 to 23.8 Bcf/d in 2017 (EIA). These plays are credited for driving growth in US natural gas production since 2012 and have played a critical role in enabling low domestic prices and increasing exports.

The Water Filtration Alternative

Researchers note that a number of alternatives to disposal wells are emerging at varying levels of cost. These largely involve treating the produced water to remove its various contaminants, which can include radioactive substances, heavy metals, and high concentrations of salt. Traditional wastewater treatment plants cannot be used because they lack the sufficient processes needed to clean this water.

The most cost competitive alternative to underground injection highlighted by researchers is the option of using a membrane to clean the brine produced water. The company Oasys Water offers a system that drives the brine solution through a series of semi-permeable membranes at a cost of nearly $2/bbl of water. The water that emerges from this process is clean enough to be discharged into streams or drainage systems.

Other potential treatments on the horizon that require further research include the option of boiling the water. However, researchers note that the cost of using this process can run upwards of $17/bbl and the heavy salt causes extreme wear and tear to the requisite industrial boilers, resulting in massive equipment replacement costs.

Lastly, the study says the process of electrodialysis could be used to separate water from contaminants. Researchers at the Massachusetts Institute of Technology have found that an electrical current can be used to separate fresh water from a salty solution. Salt is an effective conductor of electricity and successive stages of electrodialysis can remove most contaminates. But this process has not been tested in the oil and gas industry and there are not commercial treatment options available.

Researchers ultimately concluded that while the common practice of injecting produced water into disposal wells is relatively cheap, this practice comes with high environmental risks. These risks include the potential for groundwater contamination that is caused by surface spills or breaks in the tubing for saltwater disposal wells and even induced seismic activity.

At present, the impetus for improving produced water disposal practices is driven primarily by the sustainability practices of each producer and not government regulations. Researchers found that the oil and gas industry is exempt from some of the most stringent federal environmental regulations, like the Safe Drinking Water Act the Clean Water Act, but noted that states have been working to impose their own rules to address areas of concern. For instance, Pennsylvania in recent years adopted new guidelines intended to prevent spills and releases of harmful substances.

Today’s Best Option

The study ultimately recommends Oasys Water’s membrane filtration as the best option for disposing of produced water today. Researchers said that while using this method can result in slightly higher costs for water treatment and transportation, it appears to be the most sustainable solution until other technological advances are advanced in the future.

“This (membrane) system was recommended because of its relatively cheap cost yet adherence to sustainability and environmentally friendly concerns,” the study said.

To read a PDF of the Penn State study, click here.

Schlumberger’s Stewardship Tool

Schlumberger Global Stewardship

A long-standing culture of social and environmental stewardship worldwide

The Schlumberger Global Stewardship journey is continuing to gain momentum as the company works with customers, investors, NGOs and other relevant organizations to achieve its environmental, social, and governance (ESG) objectives.

The most recent Schlumberger Global Stewardship Report outlines the company’s approach to ESG that is rooted in a long-standing culture of social and environmental stewardship worldwide. As a business and a community of individuals, Schlumberger focuses on areas where its organizational strengths, technological expertise, and cultural values can have the greatest impact.

The report describes Schlumberger Global Stewardship initiatives such as:

Technological expertise

The company has developed software technology that incorporates sustainability into its engineering and operational practices by modeling efficiency gains at the wellsite that yield a lower environmental footprint. By modeling its environmental footprint relative to metrics such as emissions, air quality, water use, noise, and chemical exposure, the unique web-based software is used to evaluate potential projects related to well stimulation. This software, known as the Stewardship Tool, has played an important role in the development of many next-generation technologies, such as the BroadBand unconventional reservoir completion services and the Automated Stimulation Delivery Platform.

Sustainable development

In 2017, Schlumberger became the first associate member of IPECA, the global oil and gas industry association for environmental and social issues. Schlumberger participated in IPIECA’s development of Mapping the Oil and Gas Industry to the Sustainable Development Goals: an Atlas, a publication describing the implications of the United Nations Sustainable Development Goals (SDGs) for the oil and gas industry and how IPIECA members may provide support in achieving these goals.

Community outreach

Schlumberger has a long-standing commitment to science and engineering as well as health and safety. This forms the basis of the company’s community outreach initiatives which includes programs that support science, technology, engineering and mathematics (STEM) education as well as health, safety and environment (HSE) workshops for youth—both local and global—many of which are supported by employee volunteers.

To learn more about these and other best practices, download the latest edition of the Schlumberger Global Stewardship report here.

Published Date: 09/14/2018

Source: www.slb.com

 

Colorado Cleantech Industries Association Announces Winners of the 2018 Oil & Gas Cleantech Challenge

Sep. 11, 2018 / PRZen / GOLDEN, Colo. — The Colorado Cleantech Industries Association (CCIA) announced Modern Wellbore Solutions, Avivid Water Technology, Cold Bore Technology, and Direct-C the top presenters of the 2018 Oil & Gas Cleantech Challenge (OGCC) and Modern Wellbore Solutions as the winner of the $5,000 grand prize.

Managed in partnership with BP Lower 48, Noble Energy and ConocoPhillips, the OGCC assists the extractive energy industry in identifying new technologies to make energy development safer, cleaner and more environmentally responsible. Following an international call for applications, the partners selected 10 companies, five from the U.S. and five from Canada to present to investors and decision-makers from the oil and natural gas ecosystem.

The top four presenters of CCIA’s 2018 Oil & Gas Cleantech Challenge were:

Modern Wellbore Solutions – Winner of the $5,000 grand prize, Modern’s stackable, full-bore, fracture treatment pressure rated Multilateral Junction Tool allows access to multiple reservoirs or pay zones from one motherboard, gaining more production while lowering costs during an interventionless completion.

Avivid Water Technology – Avivid is dedicated to enhancing the world’s water resources, using advanced technologies, that reduce or eliminate the need for chemicals to purify water.

Cold Bore Technology – Cold Bore’s SmartPAD is the world’s first ECR (Electronic Completions Recorder) which is providing completion operations of the future, today.

Direct-C – Direct-C provides certainty and reliability in 24/7 leak detection monitoring for liquid hydrocarbons &/or produced water, completely free of false positives; when an alert is received, immediate actions can be taken to mitigate the leak and its impact.

“Industry executives and sponsors were extremely impressed with the presentations and how well the teams addressed the challenges posed,” said Shelly Curtiss, CCIA’s executive director. “Each year the technologies are further along in development and deployment and it becomes harder and harder to select a winner. We truly appreciate the partnerships that make this program possible and we look forward to planning a robust 2019 Challenge.”

Companies applying for the OGCC were asked to provide novel technologies capable of working on issues related to unmanned aerial vehicles, digital oilfield, items to reduce truck traffic, blockchain, space-saving items to reduce footprint, plant or biological solutions, air, water, remote/distributed power, power management, advanced materials and chemicals. Companies selected to present on September 6 included

  • Aimsio

  • Avivid Water Technology, LLC

  • Cold Bore Technology

  • Direct-C

  • LongPath Technologies, Inc.

  • Modern Wellbore Solutions, Ltc.

  • Osprey Informatics

  • Raven SR

  • Transworld

  • Vesmir Inc. (PetroDE)

In addition to industry partners, the 2018 OGCC was supported by Wells Fargo Foundation, Consulate General of Canada in Denver, Colorado Energy Office, Altira, Perkins Coie, Rocky Mountain Institute, and Metro Denver Economic Development Corporation. For more information about the OGCC, please visit www.coloradocleantech.com/oilgaschallenge/

About CCIA

Founded in 2008, Colorado Cleantech Industries Association (CCIA) is a statewide organization dedicated to promoting Colorado’s cleantech industries. CCIA impacts Colorado’s policies, people, products and programs that drive the expansion of a cleaner, cheaper, more efficient and secure energy economy. Through advocacy, public policy leadership, development, and education, CCIA works to ensure that Colorado is a global cleantech leader. For more information about CCIA, visit www.coloradocleantech.com.

Follow the full story here: https://przen.com/pr/33270069

PRESS RELEASE: The IoT Solutions Awards acknowledge the year’s best innovations for the industrial internet

IoTSWC 2018 awards Huawei, IoTerop-Synox, Nokia and Intel-ARM-Pelion for their innovative solutions

Huawei, IoTerop-Synox, and Nokia were this year’s winning companies at the IoT Awards held at IoT Solutions World Congress, the leading international industrial internet event organized by Fira de Barcelona in recognition of the best projects developed in the field of the industrial internet throughout the last year. Similarly, the solution jointly developed by Intel, ARM, and Pelion enabling users to connect any IoT device to the cloud in a matter of seconds received the award for the best testbed at the show, which is being held for the fourth time until tomorrow at Fira de Barcelona’s Gran Via venue.

In the Business Transformation category, the award went to the Huawei OceanConnect IoV (Internet of Vehicles) platform applied by the Groupe PSA car firm. This platform makes vehicles smart by transmitting data to the cloud securely, reliably and efficiently, transforms the service provided by car manufacturers and contributes to the development of smart transport.

The Industry Award went to the system for non-intrusive industrial monitoring at nuclear plants, based on smart cameras built by the IoTerop and Synox companies for Électricité de France EDF, the leading electricity generation and distribution company in France. This IoT solution is capable of managing assets and optimizing the existing equipment and maintenance tasks at the EDF Golfech nuclear plant in real time.

Nokia’s “Sensing as a Service” project won the award in the Innovative Technology category. This is a platform developed for Cellcom, a regional wireless service provider in the USA, which collects and processes data from sensors in real time and sells it in a marketplace managed on the blockchain platform. The information collected includes environmental data and data for predicting anomalies in the industrial environment, controlling hardware and monitoring production plants.

The IoT Awards also presented an award to the best of the 10 testbeds exhibited this year at IoT Solutions World Congress. The jury decided that the winner was the solution developed by Intel, ARM, and Pelion for Hitachi and Infosim, enabling its operators to plug in, connect and use any device on IoT platforms in a matter of seconds. This prototype is highly innovative, as it currently takes between 20 and 40 minutes to configure an IoT device and provision it in a cloud management system and, in most cases, prior configuration by the manufacturer or manual configuration by a qualified installer is required.

Among the finalist companies of this year’s IoT Awards were Serimag, Libelium, Tellmeplus, Witrac, Neuron Soundware, Huawei Technology, Dassault Systèmes, and Nymea.

The IoT Solutions Awards Gala was held in the Italian Pavilion at the Montjuïc venue and brought together the main actors in the international industrial internet field.

Barcelona, October 2018

  • Be the first to know about news, events and more.

    X
    We respect your privacy. View privacy policy.

     

  • Most Popular Topics

    Editor Picks