Produced Water Facility at Chevron San Ardo Oil Field Features the First-Ever Installation of OPUS®

SCOPE

Chevron’s San Ardo oil field in Southern California recovers more than 10,000 barrels of heavy oil each day. The oil extraction process generates large volumes of produced water that require treatment and management, typically disposed of by deep well injection. Chevron engaged Veolia’s water treatment technology, engineering and operations experts to provide a new solution for sustainably treating the produced water. This would allow Chevron to minimize its water impact, while maximizing efficiency and significantly expanding production.

Southern California Refinery Case Study

PDF – 2.12 MB

To achieve this, Veolia provided Engineer-Procure (EP) services and operates a produced water management facility at this oil field that features the first-ever installation of Veolia’s OPUS® (Optimized Pretreatment and Unique Separation) technology. In this case, Chevron San Ardo’s treated water is used in two ways – reused for steam generation, and released into aquifer recharge basins that replenish local water resources and allow Chevron to recover more oil. The reliable operations & maintenance of the plant is backed by a Veolia performance guarantee.

CHALLENGE

The process of extracting oil from the ground generates a volume of water that can range from 10 to 20 times the oil production rate. Historically, a portion of this water had been recycled and softened for reuse in steam generation, with the remainder going to local EPA class II injection wells for disposal. However the injection zone capacity is limited, which constrains full field development and daily production levels.

The raw produced water for this oil field is 200°F, and contains about 25 ppm free oil, 80 ppm TOC, 240 ppm silica, 26 ppm boron, 240 ppm hardness and 6,500 ppm Total Dissolved Solids (TDS). The project goal was to reduce the feed water TDS to less than 510 ppm and boron to less than 0.64 ppm for discharge, while achieving 75% water recovery across the treatment system and minimizing the volume of produced water requiring re-injection. For steam generation, the project goal was to reduce the feed water hardness to less than 2 ppm total hardness as CaCO3.

SOLUTION

Veolia provided Chevron with the first produced water facility in the world to use its OPUS® technology, a multiple-treatment process that removes contaminants sufficiently to meet the established requirements for discharge. The technology and services provided by Veolia enables the plant’s entire water cycle to be managed in a truly sustainable way, while simultaneously expanding oil production capacity.

Since the plant was commissioned in 2008, Veolia has operated and maintained (O&M) the facility for Chevron.  Under its O&M contract, Veolia provides operations for the plant, which treats a combined 150,000 barrels of produced water daily, and oversees the facility’s maintenance according to an established performance guarantee. Additionally, Veolia provides Chevron with on-site and off-site technical and engineering support to troubleshoot issues, maintain optimal operations, prevent failures and implement processes to help maximize oil production.

RESULT

Veolia’s innovative application of its OPUS® technology – groundbreaking for produced water management – has delivered exceptional value back to Chevron San Ardo. By developing a sustainable solution that allows up to 50,000 barrels per day of produced water for surface discharge and another 75,000 barrels per day for steam generation, Chevron is minimizing its environmental impact on water-stressed California by returning water to the aquifer recharge basins. And by avoiding deep well injection, Chevron has a long-term solution for managing produced water that limits its regulatory risk and supports expanded production activities.

Thanks to Veolia’s expert operations & maintenance staff who run the facility for Chevron, the produced water is consistently treated to levels that allow for surface discharge to replenish local water resources – a critically important factor for oil field operations and their social license to operate in California. With plant operations handled by Veolia and backed by a performance guarantee, Chevron can focus on its core operation of oil production.

By partnering with Veolia, Chevron San Ardo accomplished its objective of achieving a more circular, sustainable and reliable business operation.

Rethinking the oil and gas organization

December 2016, McKinsey & Company, www.mckinsey.com. Copyright (c) 2018 McKinsey & Company. All rights reserved. Reprinted by permission.

Organizational choices made during a time of resource scarcity need reexamination when the cycle turns.

When business cycles turn, cyclical industries can struggle to retool their organizations for the new environment. For instance, today’s oil and gas companies were developed in a time of resource scarcity. To get at those hard-to-find, difficult-to-develop resources, companies greatly expanded the role of their central functions—mandating them to set common standards, make technical design decisions, track company-wide metrics, and disseminate best practices. This worked well during a decade of high growth and high prices but created complexity that added costs, stifled innovation, and slowed down decision making. As these central teams expanded, general and administrative costs grew fivefold, hitting nearly $5 per barrel in 2014 (exhibit), with the biggest increases coming from technical functions such as engineering, geosciences, and health and safety.

Oil companies have cut support functions since 2014 but must consider more radical organizational changes as prices remain weak.

With prices now below $50 a barrel, that organizational blueprint is no longer sustainable. While companies have cut their support functions since 2014, the overall organizations supported by these functions are also smaller. This suggests further reductions in corporate functions will be needed, as well as new organizational models.

A more agile organization, with fluid teams and looser hierarchies, can lower costs and create greater responsiveness to today’s vastly different markets—ranging from megaprojects to less asset-heavy unconventional shale-oil and renewable-asset plays. Technologies such as networked sensors that generate and share data can help optimize production processes, while digitally enabled automation of routine manual activity can reduce human risk and spur productivity. Critically, the structures built to manage scarce talent and large-scale megaprojects will need to be fundamentally redesigned. We see two models arising: for lower-risk assets such as tight oil, a very lean corporate center with highly autonomous asset teams will suffice, while higher-risk, more capital-intensive assets will need a comparatively stronger center with deeper functional and risk-management capabilities.

For additional insights, see “The oil and gas organization of the future.”

About the author(s)

Christopher Handscomb is a partner in McKinsey’s London office, Scott Sharabura is an associate partner in the Calgary office, and Jannik Woxholth is a consultant in the Oslo office.

The Oil & Gas Technology Centre has invested in three robotics projects to transform pressure vessel inspection

  • Robotics projects announced with both Sonomatic and University of Strathclyde
  • Technologies focus on reducing cost and improving safety of vessel inspection
  • Next Asset Integrity ‘Call for Ideas’ seeks corrosion under insulation solutions

The Oil & Gas Technology Centre has invested in three robotics projects to transform pressure vessel inspection, which costs the industry hundreds of millions each year and poses significant safety challenges.

The projects were selected as part of our first Asset Integrity ‘Call for Ideas’, which launched in 2017. Pressure vessel inspection was identified by the industry as a crucial challenge to maximising economic recovery from the UK Continental Shelf.

Non-intrusive inspection (NII) of pressure vessels can deliver significant cost and safety benefits. Sonomatic’s aim is to develop the next generation of robotic NII technology, with improved speed, agility and autonomy compared with existing systems. The robot, incorporating advanced inspection technologies, will help increase production uptime, reduce costs and improve efficiency.

Separately, we’re working with the University of Strathclyde to develop a new robot crawler equipped with 3D laser scanning and non-destructive testing technology. Existing crawlers are typically deployed only when there is clear line-of-sight for the operator. The University’s solution will construct a virtual, dynamic 3D representation of the inspection site meaning it can be operated safely from a remote location.

We’re also supporting the University of Strathclyde in the use of swarms of small unmanned aerial vehicles, or drones, for visual inspection offshore. Drone swarms, which are being rapidly adopted by the military and for logistics activities, could deliver a safe, flexible and cost-effective alternative to human inspection.

In March 2018, we launch our second Asset Integrity Call for Ideas, focused on predicting, preventing, detecting and repairing corrosion under insulation. More information will be communicated in the coming weeks.

Rebecca Allison, Asset Integrity Solution Centre Manager, said:

“From day one, developing and deploying new technology for pressure vessel inspection has been a key focus area for the Oil & Gas Technology Centre. We’re delighted to be investing in robotics projects with Sonomatic and the University of Strathclyde, which we believe can significantly reduce costs, improve efficiency and enhance safety.

“Process vessel inspection and corrosion under insulation cost the industry more than £300 million each year so it is important that our first two Calls for Ideas focus on these challenges. We’re always looking for innovative ideas and concepts from inside and outside the oil and gas industry and look forward to launching our next Call in March.”

Mark Stone, Integrity Services Manager, Sonomatic, said:

“We’re excited to be working with the Oil & Gas Technology Centre to develop the next generation of robotic inspection tools for non-intrusive inspection. There have been significant advances in robotics technology, inspection solutions and data science over the past few years and the support from the Technology Centre will ensure these are soon available in a practical tool for field application.”

Willie Reid, Director of the Strathclyde Oil and Gas Institute, said:

“The robotics team at Strathclyde, led by Dr Gordon Dobie and Dr Erfu Yang, are excited to be working with the Oil & Gas Technology Centre on these challenges for improving inspection for offshore asset integrity.

“In a multi-disciplinary approach, they will use the broad experience of both the Centre for Ultrasonic Engineering and also the Department of Design, Manufacture and Engineering Management. We will also utilise our experience in transferring technology from other sectors into oil and gas.”

http://www.theogtc.com

ExxonMobil to Join Stanford Strategic Energy Alliance

  • Builds on Global Climate and Energy Project’s 15 years of success
  • Strong science and exploratory research to develop low-carbon energy solutions
  • $20 million commitment in addition to ExxonMobil’s GCEP investment of more than $100 million
  • Expands company’s collaborative work with academic and research institutions around the world

IRVING, Texas–(BUSINESS WIRE)–Exxon Mobil Corporation (NYSE:XOM) today announced that it will become the first founding member of the new Stanford Strategic Energy Alliance, an initiative that will examine ways to improve energy access, security and technology while reducing impacts on the environment. As part of its commitment, ExxonMobil will contribute $20 million in funding over five years to research and develop lower-carbon energy solutions.

The Stanford Strategic Energy Alliance builds on the success of the Global Climate and Energy Project (GCEP), also led by Stanford, which focused exclusively on low-emissions, high-efficiency energy technologies. ExxonMobil has sponsored GCEP since its inception in 2002 with a commitment of $100 million and additional contributions toward specific projects. In its 15 years of work, GCEP has evolved into a pioneering collaboration of scientists, engineers, researchers and students focused on identifying breakthrough low greenhouse gas emission energy technologies that could be developed and deployed on a large scale.

“ExxonMobil has worked with Stanford to advance low-carbon technologies over the last 15 years, and we’re excited to be the first founding member of this new endeavor,” said Bruce March, president of the ExxonMobil Research and Engineering Company. “Identifying scalable solutions for addressing the dual challenge of supplying energy to meet global demand while minimizing the risk of climate change is one of our core missions. We are continuously looking for ways to improve existing supply options and manufacturing processes while managing carbon intensity.”

Since its creation, GCEP has sponsored more than 100 research programs in the United States, Europe, Australia, China and Japan, and has resulted in over 900 papers in leading journals and more than 1,200 presentations at conferences. Building on fundamental science, significant advances have been made in the areas of photovoltaic energy, renewable and lower carbon fossil fuels, batteries and fuel cells. More than 60 technologies have also been developed and 15 patents have been issued. Multiple companies have also started up as a direct result of or inspiration from GCEP research.

The new Stanford Strategic Energy Alliance will pair industry alliance members and Stanford professors who share common research objectives across the spectrum of energy topics from science and engineering to policy and business. Managed by the Stanford Precourt Institute for Energy, the alliance will also fund some early-stage research at the direction of its faculty leadership.

ExxonMobil’s support for the Stanford Strategic Energy Alliance expands the company’s collaborative efforts with other academic and research institutions that are focused on developing an array of new energy technologies, improving energy efficiency and reducing greenhouse gas emissions. The company currently works with about 80 universities in the United States, Europe and Asiato explore next-generation energy technologies, including founding members of MIT Energy InitiativePrinceton E-ffiliates Partnership and University of Texas at Austin Energy Institute.

Source: Exxon Mobil Corporation

ExxonMobil
Media Relations, 972-940-6007

Most Popular Topics

Editor Picks