Repsol and Google Cloud to optimize refinery management using big data and artificial intelligence

  • Repsol’s goal is to maximize the performance and efficiency of a refinery, which is among the largest and most complex industrial facilities.

  • Google Cloud will provide its computing power, experience with big data and machine learning expertise.

  • The initiative is part of Repsol’s commitment to digitalization, innovation and technology across all of its business areas.

Repsol has today announced that it is working with Google Cloud to launch a project that will use big data and artificial intelligence to optimize management of the Tarragona refinery. Refineries are among the largest and most complex industrial facilities.

Repsol’s Executive Managing Director of Downstream, María Victoria Zingoni, and Google’s Country Manager for Spain and Portugal, Fuencisla Clemares, participated in the launch of the project, which will be carried out in the Tarragona Industrial Complex and marks a pioneering challenge in the global refining industry.

This initiative puts the latest cloud technology from Google at the service of the refinery’s operators. Repsol’s objectives are to maximize efficiency, both in energy consumption as well as consumption of other resources, and to improve the performance of the refinery’s overall operations.

To achieve this, Google will make available to Repsol its data and analytics products, the experience of its professional services consultants and its machine learning managed service, Google Cloud ML, which will help Repsol’s developers to build and bring machine learning models to production in their refinery environment.

The management of a refinery involves around 400 variables, which demands a high level of computational capacity and a vast amount of data control. This is an unprecedented challenge in the refining world.

Until now, the highest number of functions integrated digitally in an industrial plant is around 30 variables, demonstrating the vast challenge this project presents. It aims to increase the number of variables being managed by more than 10 times. Repsol chose the Tarragona refinery to develop this initiative because the online configuration of its production schematics facilitates testing and implementation.

This project, as well as the collaboration with Google Cloud, is part of Repsol’s ongoing digitalization, innovation and technology projects development in all of its business units to improve its competitiveness and efficiency.

The project has the potential to add 30 cents on the dollar to Repsol’s refined barrel margin, which could translate to 20 million dollars annually for the Tarragona refinery, with significant upward growth if all optimization objectives are achieved.

Improvement of industrial processes

For Maria Victoria Zingoni “this is an efficiency project in all senses: it seeks to consume fewer resources; reduce energy consumption, which is the highest cost of a refinery; increase the unit reliability and, by extension, improve economic performance.”

“This initiative belongs to a more comprehensive plan to take advantage of the possibilities afforded us by the latest in technology, and improve industrial processes. We are not afraid of aiming for the stars, even if some projects will fail. This is about learning as fast as possible and that machines help people in their work,” said Repsol’s Executive Managing Director of Downstream.

Google’s Country Manager for Spain and Portugal, said that “This project demonstrates the commitment from Spanish companies to digital transformation and the application of machine learning in industrial processes, of which Repsol is a pioneer.

“At Google, we are deeply committed to sustainability and ensuring that we have a positive impact on the environment – and we see technology such as machine learning and data analytics play an important role in helping our customers maximize their own efficiency. We are proud to collaborate with a company such as Repsol, which has been a leader for many years in leveraging technological innovation to reduce its environmental impact,” said Fuencisla Clemares, Country Manager Google España y Portugal.

This project, as well as the collaboration with a partner like Google, is part of Repsol’s ongoing digitalization, innovation and technology projects development in all of its business units to improve its competitiveness and efficiency.

This project is compatible with other digital initiatives that are already in use at Repsol’s industrial facilities, such as Siclos, with which Repsol’s refinery control panel operators learn, in real time, the economic implications of operating decisions; or Nepxus, which increases planning, analysis and agility in decision-making in the control rooms of these industrial installations.

Tarragona is one of the six refineries that Repsol operates in Spain and Peru. This plant has the capacity to distill 186,000 barrels of oil a day and is Repsol’s third-largest unit.

The facility occupies over 500 hectares and is as large as the Tarragona’s city center. The refining unit processes 9.5 million tons of raw material a year and the storage tanks can hold a million cubic meters.

REPSOL Press Release 

Video

MOTIVE™ Directional Drilling Bit Guidance System

The MOTIVE™ Bit Guidance System is a decision automation tool that has proven to significantly improve drilling performance. This automated system works in real-time to balance different objectives when making steering decisions. The system takes into account each decision’s impact on drilling speed, tortuosity, and future production potential. The patented system considers rotary tendencies, motor yield, motor potential, the skill of the driller, geosteering adjustments, nearby wells, lease lines, geology, and directional drilling limits set by each operator.

www.motivedrilling.com

YouTube

The Graduate Certificate in Global Energy, Development, and Sustainability (GEDS)

What is the GEDS Certificate?

A multidisciplinary certification that:

  • Provides the analytical tools and frameworks necessary for assessing and addressing the long-term social, economic, and environmental impacts of oil and gas projects.

  • Introduces “best-practices” for creating energy projects that benefit all stakeholders (communities, companies, governments) in developing nations and new production regions.

  • Teaches students the historical and structural origins of the “Natural Resource Curse” as it manifests in different regions of the globe, and how to plan for and mitigate its effects.

Because the technical expertise of companies and governments has traditionally been focused on the efficient discovery and extraction of oil and gas resources, the skills required for developing energy projects that are sustainable and beneficial to all stakeholders (communities, companies, and governments alike) have not always been prioritized in training for an oil and gas career.

The Graduate Certificate in Global Energy, Development, and Sustainability (GEDS) provides students with such skills, imparting them through a unique, multi-disciplinary curriculum focused on the petroleum industry and its impact on societies. Classes are designed and taught by UH faculty and local/international energy experts with long academic, industry, and civil society/NGO experience. The certificate is one-of-a-kind, providing critical and timely knowledge, theory, and skill sets from fields such as business, economics, global oil and gas history, anthropology, environmental law/policy, international petroleum law, human rights law, political science, industrial occupational psychology, human resource management, corporate social responsibility, and risk analysis.

The GEDS Certificate is of benefit to those working or intending to work in the energy sector – including industry professionals, government officials and regulators, members of civil society or NGO activist/policy groups, energy consultants and financial advisors. Graduate students who are interested in energy, sustainability, and global or domestic energy policy are invited to apply as well.

Join us as we work to chart a course for a sustainable energy future, one that will benefit all stakeholders and help navigate the transitions to come!

Click here for more information

Video

Geoscience BC – GHGMap project

 

Full project details are available on the Geoscience BC website: http://www.geosciencebc.com/s/2016-06… GHGMap uses novel sensors, developed by NASA/JPL , on drones to improve the speed, accuracy, safety and cost of measuring greenhouse gas (GHG) emissions. The technology will be used to remotely map emissions of gases such as methane, ethane and carbon dioxide — providing the independent measurement data needed for informed decisions. Developing and using new technologies to better understand GHG emissions helps Canada to maintain its reputation as a leader in clean resource development, in GHG emission reduction and in innovation. By bringing technology closer to commercialization, GHGMap will also create new economic opportunities for Western Canada. GHGMap meets a need to accurately and cost-effectively measure emissions of methane, ethane and carbon dioxide from sites that may be high sources of GHGs. These include natural and manmade sites such as, wetlands, landfills, sewage treatment plants, agricultural feedlots, gas wells, infrastructure and pipelines, dams and thawing permafrost. – Accurate measurement is essential to reliably assess true GHG emissions, not just modelled values. – As legislation evolves to work towards emissions reduction targets, governments need measurement-based GHG budgets to develop robust GHG inventories and quantify and verify reductions. – The petroleum energy sector and others want GHGMap to identify and reduce emissions. – Communities are demanding comprehensive, accurate and economical ways to obtain GHG emissions data, as they seek to make balanced resource development and the environmental decisions. Initially running from 2017 to 2020, GHGMap will: – Provide the first Canadian GHG inventory based on real-time, remote data collection, rather than the emissions models currently used for reporting. – Deploy laser spectrometer (OPLS) technology from NASA’s Jet Propulsion Laboratory (JPL) to measure GHG emissions. – Rapidly obtain and report measurements of trace quantities of greenhouse gas emissions on a regional scale or within just a few metres of GHG emitting site. – Identify and test greenhouse gas emissions at a variety of petroleum energy sites in Western Canada to improve identification and remediation. – Train highly qualified personnel to use equipment to survey GHG emissions. – Demonstrate real-time GHG emission monitoring and attract future commercial investment in and use of the technology by demonstrating a sustainable business model. The technology will be tested at selected gas sites in northeast British Columbia before being rolled out to other parts of Western Canada. Project Benefits GHGMap uses a laser spectrometer (OPLS) originally designed by NASA’s Jet Propulsion Laboratory that measures critical GHGs, including methane, ethane and carbon dioxide at parts-per-billion levels. This tiny, 400 g OPLS instrument is mounted and flown on a small Unmanned Aerial Vehicle (sUAV or drone) to map GHG concentrations and distributions. The GHGMap team, which includes Geoscience BC, Geochemical Analytic Services, InDro Robotics and NASA/JPL, is also partnering with Optical Knowledge Systems to build the next generation system, a Capillary Absorption Spectrometer (CAS), which will add the powerfully diagnostic gas fingerprinting of carbon isotope to the measurement palette. This will use ‘atmospheric dispersion’ and ‘eddy covariance flux’ modelling to pinpoint locations and intensities of specific emissions. An important feature is the integration of large-scale methane and carbon dioxide measurements using Canada’s new GHGSat satellite. GHGMap bridges the scale and data gaps between satellite data and on-site pointsource measurements.

Geoscience BC

Published on Feb 22, 2018

YouTube

The SDGs and Business

What role can business play in achieving the Sustainable Development Goals (SDGs) The World Business Council for Sustainable Development (WBCSD) launched the CEO Guide to the SDGs – a new resource aimed at galvanising engagement from global business leaders in relation to the Sustainable Development Goals (SDGs). The CEO Guide to the SDGs sets out clear actions that CEOs can take to begin to align their organisations with the SDGs and plot a course towards unlocking the value they represent. Find out more: http://www.wbcsd.org/Overview/Resourc…

Published by Green TV April 3, 2017

 

Robo-Glove – Wearable technology that reduces the force needed to operate tools

Researchers at the NASA Johnson Space Center (JSC) in collaboration with General Motors (GM) have designed and developed Robo-Glove, a wearable human grasp assist device, to help reduce the grasping force needed by an individual to operate tools for an extended time or when performing tasks having repetitive motion. Robo-Glove has the potential to help workers, such as construction workers, hazardous material workers, or assembly line operators, whose job requires continuous grasping and ungrasping motion. The Robo-Glove also has potential applications in prosthetic devices, rehabilitation aids, and people with impaired or limited arm and hand muscle strength. This NASA Technology is available for your company to license and develop into a commercial product. NASA does not manufacture products for commercial sale.

Benefits

  • Wearable assist technology: a lightweight robotic glove that fits on your hand

  • Small and compact design

  • Human-safe robotics: pressure sensors give a sense of touch or haptic feedback

  • Self-contained glove: actuators, pressure sensors, and synthetic tendons are embedded

  • Ergonomic – the system helps reduce muscle strain from repetitive motion tasks

Applications

  • Construction

  • Hazardous material handling

  • Medical

  • Automotive Repair

  • Manufacturing

  • Repetitive motion work

  • Oil and gas exploration

The Technology

This technology is directed to the field of wearable robotics, where a machine's strength and a human's ability to see, feel, and think are combined to develop a more robust system than if each operates separately.
This technology is directed to the field of wearable robotics, where a machine’s strength and a human’s ability to see, feel, and think are combined to develop a more robust system than if each operates separately.

Originally developed by NASA and GM, the Robo-Glove technology was a spinoff of the Robonaut 2 (R2), the first humanoid robot in space. This wearable device allows the user to tightly grip tools and other items for longer periods of time without experiencing muscle discomfort or strain. An astronaut working in a pressurized suit outside the space station or an assembly operator in a factory might need to use 15 to 20 lbs of force to hold a tool during an operation. Use of the Robo-Glove, however, would potentially reduce the applied force to only 5 to 10 lbs.

The Robo-Glove is a self-contained unit, essentially a robot on your hand, with actuators embedded into the glove that provide grasping support to human fingers. The pressure sensors, similar to the sensors that give R2 its sense of touch, are incorporated into the fingertips of the glove to detect when the user is grasping an object. When the user grasps the object, the synthetic tendons automatically retract, pulling the fingers into a gripping position and holding them there until the sensor is released by releasing the object. The current prototype weighs around two pounds, including control electronics and a small display for programming and diagnostics. A lithium-ion battery, such as one for power tools, is used to power the system and is worn separately on the belt.

Johnson Space Center
2101 NASA Parkway
Houston, TX 77058

281.483.3809
[email protected]

OFFSHORE DECOMMISSIONING IN ASIA PACIFIC REGION: WHY ‘RIG TO REEF’ IS VITAL

The Asia Pacific region is set to follow the North Sea in increasing its decommissioning activity over the next decade. Indonesia, Brunei, Malaysia and the rest of the region is home to 833 installations that are on or over 20 years old – the average life expectancy of offshore assets. But with so much of the region’s infrastructure under threat from decommissioning, many have questioned the impact to the environment.

A thought piece by the National University of Singapore (NUS) singled out the importance of rig to reef in this context back in 2012. In this blog, we explore what could be done in the region to both keep the integrity of the sea bed and complete decommissioning applications as efficiently as possible.

RIG-TO-REEF

Rig-to-reef (RTR) is the practice of converting decommissioned platform infrastructure into artificial reefs for the seabed. The practice has already proved popular in the Asia Pacific when the storm-damaged Baram-8 in Malaysia was made into an artificial reef. Despite there being no current RTRs in place in the region, there is sure to be an appetite as decommissioning work increases.

Rigs prove popular with sea life, especially as they become an integral part of the seabed over their 20-30 year life span. An OCS report that focussed on the Gulf of Mexico in 2000 stated that fish densities were 20-50 times higher around the platforms than anywhere else in open water – a true sign that artificial reefs work.

PROS OUTWEIGH THE CONS

While operators may look towards asset life extension techniques to keep relevant rigs operating, those who are set to decommission will be pleased to know that the pros outweigh the cons in terms of implementing RTRs with old assets.

Despite potential navigational issues around the Asia Pacific region, operators creating RTRs could benefit from being more environmentally friendly, increasing fisheries in the field, and potentially negating costs such as rig disposal. The question on whether RTRs would be welcome in the region are so far undecided and confusing by governing bodies, according to the NUS.

GIVEN THE GREEN LIGHT

In her presentation for the National University of Singapore, Youna Lyons highlighted the large discrepancy between governing bodies and law in the Asia Pacific region that meant operators looking to RTRs would be left confused as to whether they could undertake a project after decommissioning.

“(While) international law does not prevent the re-use of rigs as artificial reefs, provided that it does not compromise the safety of navigation, IMO guidelines (on the matter) are inadequate. A paradigm shift is needed in the approach.”

The biggest issue seems to be the safety of navigation around such artificial reefs by shipping traffic. That aside, the law states that rigs can be re-used, it is just a case of where they will be able to be positioned.

RIG TO REEF IS VITAL

In summary, the presentation reveals how vital rig to reefs can be for both operators and environment. While operators can potentially save money, and enhance the environment they’ve extracted from, the seabed and sea life can see drastic increases in activity if the manmade reefs are positioned well – as long as governing bodies and local authorities agree, Asia Pacific could benefit from more RTRs in the future.

THE INCREASE OF DECOMMISSIONING

As operators around the world review their aged assets, in the current climate it is no surprise to see decommissioning projects beginning on non-profitable rigs. In the Claxton Engineering Decommissioning Case Study Pack, you will learn how the Claxton team have already helped operators on their decommissioning projects and helped to save time and money too.

To find out more about the free offshore Decommissioning Case Study Pack, and to get your hands on a copy, click here.

Please be sure to follow and subscribe to Claxton at http://insights.claxtonengineering.com/.

Originally written and posted by Andy Norman, Head of Brand and Marketing, Claxton.

 

  • Be the first to know about news, events and more.

    X
    We respect your privacy. View privacy policy.

     

  • Most Popular Topics

    Editor Picks