Recommended Lighting Practices Collaboration

FORT DAVIS, Texas — The University of Texas at Austin’s McDonald Observatory has collaborated with the Permian Basin Petroleum Association (PBPA) and the Texas Oil and Gas Association (TXOGA) to reduce light shining into the sky from drilling rigs and related activities in West Texas. The excess light has the potential to drown out the light from stars and galaxies and threatens to reduce the effectiveness of the observatory’s research telescopes to study the mysteries of the universe.

“This partnership of PBPA and TXOGA with McDonald Observatory to protect dark skies in its vicinity is vital to the research of the universe taking place at McDonald,” said Taft Armandroff, director of the observatory.

The collaboration’s Recommended Lighting Practices document details best lighting practices for drilling rigs and other oilfield structures, including what types of lighting work best and how to reduce glare and improve visibility. These practices will increase the amount of light shining down on worksites, thus increasing safety while decreasing the amount of light pollution in the sky. Reducing excess light helps the observatory and also decreases electricity costs for the oil and gas producers.

The document specifically targets oil and gas operations in the seven counties with existing outdoor lighting ordinances surrounding the McDonald Observatory: Brewster, Culberson, Hudspeth, Jeff Davis, Pecos, Presidio and Reeves. However, the recommendations can be beneficial across the industry.

A new video that helps to introduce the recommendations to oil and gas companies is now available. It features the observatory’s Bill Wren explaining the importance of dark skies, and how lighting practices can both preserve dark skies and improve safety for oilfield workers. The video was produced with the support of the Apache Corporation, following the company’s extensive collaboration with observatory staff and implementation of these practices with their assets in the area. It is available to watch and share at: https://youtu.be/UnmwnO6CIR4

“For years, the PBPA and the McDonald Observatory have worked together on educating members of the Permian Basin oil and gas community about the Dark Skies Initiative and the possible impact lighting practices can have on the observatory’s work,” said PBPA President Ben Shepperd. “About two years ago, the PBPA board of directors agreed to support the creation of lighting recommendations. We decided a great way to educate members of the industry on how they could provide a positive impact on this issue was through the utilization of such recommended practices.

“So we began work with the observatory to publish recommended lighting practices and have since worked to educate our members and those outside the oil and gas industry on the recommendations through presentations, seminars, articles in magazines and newspapers, and even one-on-one conversations,” Shepperd said.

Recently, the Texas Oil and Gas Association joined the collaboration.

“The Texas Oil and Gas Association recognizes that production practices and protecting the environment are in no way mutually exclusive,” TXOGA President Todd Staples said. “The Recommended Lighting Practices collaborative effort allows for the oil and natural gas industry to continue the work vital to our economy and our future, and for the simultaneous reduction to our ecological footprint.”

In April, the observatory’s Dark Skies Initiative was named one of six Texan by Nature Conservation Wrangler projects for 2018. Texan by Nature, a Texas-led conservation nonprofit founded by former first lady Laura Bush, brings business and conservation together through select programs that engage Texans in the stewardship of land and communities.

The award will provide the observatory connections to technical expertise, industry support, publicity, and more for its Dark Skies Initiative.

“Our Conservation Wrangler program recognizes innovative and transformative conservation projects across the state of Texas,” said Joni Carswell, the organization’s executive director. “Each Conservation Wrangler project positively impacts people, prosperity and natural resources.”

— END —

Media Contacts:
Rebecca Johnson, Communications Manager
McDonald Observatory
The University of Texas at Austin
512-475-6763

Stephen Robertson, Executive VP
Permian Basin Petroleum Association
432-684-6345

Kate Zaykowski, Communications Director
Texas Oil and Gas Association
325-660-2274

Taylor Keys, Program Manager
Texan by Nature
512-284-7482

Castlen Kennedy, VP of Public Affairs
Apache Corporation
713-296-7189

Study: Filtration a Viable Option for Produced Water from the Marcellus Shale

The rising production of natural gas from hydraulically fractured wells in Appalachia generates along with it contaminated produced water that must be carefully disposed of. Researchers at Pennsylvania State University say that producers would be wise to consider the environmental risks associated with the most commonly used disposal practice of underground injection, and instead adopt more environmentally friendly and sustainable innovations in water filtration.

The study, Sustainability in Marcellus Shale Development, published by Penn State’s College of Engineering in conjunction with Chevron, notes that produced and flowback water from the prolific Marcellus Shale in Pennsylvania is most commonly disposed of through injection into saltwater injection wells drilled far below the deepest known aquifer.

But although this method is the cheapest available and most frequently used, it brings with it the potential for surface spills and casing leaks that can contaminate freshwater, as well as the risk of activating dormant faults and causing earthquakes.

Disposing Fracked Water

“During the hydraulic fracturing process, water and chemicals are used to stimulate the fissures in the rock in order to extract the natural gas. Water is mixed with sand and other chemicals and then injected into the well. After creating cracks in the Marcellus Shale, flowback water, a brine solution with heavy metals and chemicals, quickly comes back. Typically, this flowback water is stored in tanks or pits before treatment, recycling, or disposal,” according to the report, co-written by Kyle Bambu, Mike Spero, and Harry Polychronopoulos.

The most common way to dispose of this produced water is by pumping it into saltwater disposal wells that are drilled hundreds below the deepest known aquifers. But Pennsylvania’s unique geology is not well suited for such wells. At the time the study was published in Fall 2016, there were 144,000 Class II injection wells in the US and only eight of them were Class II salt water disposal wells in Pennsylvania. These eight wells combined accepted 8,667 barrels per day of brine, while similar wells operated in Texas can each dispose of more than 26,000 b/d of brine.

According to the report, the average cost to dispose of one bbl of fluid can range from as low as 25¢/bbl if the oil company operates its own disposal well, to anywhere from 50¢/bbl to $2.50/bbl if a commercial saltwater disposal well is used. The cost of using disposal is further increased by the cost of transportation.

“In northern Pennsylvania, where commercial disposal wells aren’t plentiful, the brine water may have to be transported to Ohio or West Virginia. This can increase costs by $4.00 to $6.00 a barrel, bringing the net cost of disposal in the Marcellus Shale region to $4.50/bbl to $8.50/bbl,” the study said.

The use of underground disposal wells is not without risk, and frequent concerns include the potential for groundwater contamination and induced seismic activity. In Youngstown, Ohio, the researchers noted that a Class II disposal well for fracking wastewater was linked to seismic activity after it activated a previously unknown fault line. That well was blamed for 10 minor earthquakes, the largest of which is a magnitude of 3.9. A spate of earthquakes in Oklahoma in recent years has likewise been linked to the increased injection of water into disposal wells.

The need to dispose of produced water in Pennsylvania has become more pressing in recent years as natural gas production from the prolific Marcellus and neighboring Utica shales has taken off.  Data from the federal Energy Information (EIA) Administration show that output from the shale formations more than tripled Appalachian gas production from 7.8 billion cubic feet per day in 2012 to 23.8 Bcf/d in 2017 (EIA). These plays are credited for driving growth in US natural gas production since 2012 and have played a critical role in enabling low domestic prices and increasing exports.

The Water Filtration Alternative

Researchers note that a number of alternatives to disposal wells are emerging at varying levels of cost. These largely involve treating the produced water to remove its various contaminants, which can include radioactive substances, heavy metals, and high concentrations of salt. Traditional wastewater treatment plants cannot be used because they lack the sufficient processes needed to clean this water.

The most cost competitive alternative to underground injection highlighted by researchers is the option of using a membrane to clean the brine produced water. The company Oasys Water offers a system that drives the brine solution through a series of semi-permeable membranes at a cost of nearly $2/bbl of water. The water that emerges from this process is clean enough to be discharged into streams or drainage systems.

Other potential treatments on the horizon that require further research include the option of boiling the water. However, researchers note that the cost of using this process can run upwards of $17/bbl and the heavy salt causes extreme wear and tear to the requisite industrial boilers, resulting in massive equipment replacement costs.

Lastly, the study says the process of electrodialysis could be used to separate water from contaminants. Researchers at the Massachusetts Institute of Technology have found that an electrical current can be used to separate fresh water from a salty solution. Salt is an effective conductor of electricity and successive stages of electrodialysis can remove most contaminates. But this process has not been tested in the oil and gas industry and there are not commercial treatment options available.

Researchers ultimately concluded that while the common practice of injecting produced water into disposal wells is relatively cheap, this practice comes with high environmental risks. These risks include the potential for groundwater contamination that is caused by surface spills or breaks in the tubing for saltwater disposal wells and even induced seismic activity.

At present, the impetus for improving produced water disposal practices is driven primarily by the sustainability practices of each producer and not government regulations. Researchers found that the oil and gas industry is exempt from some of the most stringent federal environmental regulations, like the Safe Drinking Water Act the Clean Water Act, but noted that states have been working to impose their own rules to address areas of concern. For instance, Pennsylvania in recent years adopted new guidelines intended to prevent spills and releases of harmful substances.

Today’s Best Option

The study ultimately recommends Oasys Water’s membrane filtration as the best option for disposing of produced water today. Researchers said that while using this method can result in slightly higher costs for water treatment and transportation, it appears to be the most sustainable solution until other technological advances are advanced in the future.

“This (membrane) system was recommended because of its relatively cheap cost yet adherence to sustainability and environmentally friendly concerns,” the study said.

To read a PDF of the Penn State study, click here.

Video

Drill cuttings and oil waste plant installed directly at the oilfield

TDP-2 pyrolysis plant designed for drilling waste treatment was installed at oilfield of oil and gas company. The plant is capable to obtain the valuable products from oil sludge thus there is no need in waste depositing. More details: http://tdplant.com/ Музыка: No Copyright Free Music GENERIC MUSIC https://youtu.be/X-ZwX5lyyy4?list=PLI…

Published on Feb 7, 2017

YouTube

These AR Goggles Are Making Faster Fixes in Oil Fields

By Milana Vinn

  •  Managing complicated repairs remotely saves oil companies time and money

Replacing parts of an outdated Baker Hughes turbine at a petrochemical plant in Johor Bahru, Malaysia, is about as fun as it sounds. The chore was supposed to halt operations at the facility for at least 10 days and cost $50,000 to fly a specialized U.S. work crew about 9,000 miles. Instead, once the equipment upgrade began last year, it took only five days and zero air travel—just an on-site technician wearing a dorky helmet camera and a few American engineers supervising remotely. They watched and coached the local crew through the helmet from a Baker Hughes site in Pomona, Calif.

Augmented-reality headsets, which overlay digital images on a real-world field of vision, are driving advances in industrial technology a few steps beyond FaceTime. While the likes of Apple, Amazon.com, Google, and Microsoft race to develop mainstream AR consumer gadgets in the next couple of years, they’ve been outpaced by oil companies looking for ways to cut costs. Some are simply buying the goggles and building custom software; others are investing directly in AR startups; still others are making the hardware as well. Baker Hughes, a General Electric Co. subsidiary, calls its rig a Smart Helmet. “Traditionally I would have to pay for two people’s travel, two people’s accommodations, and so forth to visit the customer’s site to do the mentoring,” says John McMillan, a regional repairs chief at the company whose team uses the helmet regularly. “It’s saved me a lot.”

Baker Hughes co-created its AR headset with Italian developer VRMedia S.r.l. and wrote its own software. BP Plc says it’s using AR glasses to bring remote expertise to sites across the U.S. Startup RealWear Inc.says it’s signed two dozen other energy companies, including Royal Dutch Shell Plc and Exxon Mobil Corp., to test its $2,000 headset. On March 6, AR software maker Upskill announced a fresh $17 million in venture funding from Boeing Co.Cisco Systems Inc., and other investors.

Remote gear can help experienced workers stay on the job even if they can no longer handle the travel or other physical demands of rig maintenance. “With these technologies, it’s more about the people than the hardware,” says Shell Executive Vice President Alisa Choong. Janette Marx, chief operating officer for industry recruiter Airswift, says remote work is also a good sales pitch to skilled technicians who might be lured by cushier gigs in Silicon Valley.

The bigger prize for oil companies is reduced downtime for equipment. Each day offline for a typical 200,000-barrel-a-day refinery can mean almost $12 million in lost revenue. Offshore oil and gas facilities often halt operations while waiting to fly specialists in by helicopter and, according to industry analyst Kimberlite International Oilfield Research, shut down 27 days a year on average. Little wonder, then, that analyst ABI Research estimates energy and utility companies’ annual spending on AR glasses and related technology will reach $18 billion in 2022, among the most of any industry.

Remote AR work doesn’t always go smoothly. Oil rigs often lack reliable wireless networks, and many headsets don’t yet meet the strict standards for areas near hazardous materials or high-risk jobs. Under certain conditions, for example, the headsets might emit dangerous sparks. That’s one reason many of the oil companies’ pilot programs remain just that for now.

Baker Hughes hasn’t had to worry about those issues yet, says John Westerheide, director of emerging technologies. In Malaysia, engineers were able to view equipment, send images to the headset screen, and talk directly to the on-site workers with few hiccups. “The way that we currently go to work,” Westerheide says, “that’s going to become much more virtual, interactive, and collaborative.” —With David Wethe

BOTTOM LINE – Energy and utility companies’ annual spending on AR and related technologies, which reduce travel and equipment downtime, is expected to hit $18 billion within five years.

Source Bloomberg

Video

Schlumberger tests new technologies to find oil and gas methane leaks

Increased awareness of methane’s impact on the environment is leading to increased monitoring for methane leaks. In order to reduce the amount of methane emitted into the atmosphere, we need better detection technologies. Last summer, EDF collaborated with the world’s largest oilfield service company – Schlumberger – to test a variety of stationary and hand-held technologies to detect methane leaks from equipment in the upstream oil and gas sector. To learn more about how technology and innovation can help solve the methane problem visit business.edf.org.

Published on Mar 29, 2018

YouTube

Video

MOTIVE™ Directional Drilling Bit Guidance System

The MOTIVE™ Bit Guidance System is a decision automation tool that has proven to significantly improve drilling performance. This automated system works in real-time to balance different objectives when making steering decisions. The system takes into account each decision’s impact on drilling speed, tortuosity, and future production potential. The patented system considers rotary tendencies, motor yield, motor potential, the skill of the driller, geosteering adjustments, nearby wells, lease lines, geology, and directional drilling limits set by each operator.

www.motivedrilling.com

YouTube

Produced Water Facility at Chevron San Ardo Oil Field Features the First-Ever Installation of OPUS®

SCOPE

Chevron’s San Ardo oil field in Southern California recovers more than 10,000 barrels of heavy oil each day. The oil extraction process generates large volumes of produced water that require treatment and management, typically disposed of by deep well injection. Chevron engaged Veolia’s water treatment technology, engineering and operations experts to provide a new solution for sustainably treating the produced water. This would allow Chevron to minimize its water impact, while maximizing efficiency and significantly expanding production.

Southern California Refinery Case Study

PDF – 2.12 MB

To achieve this, Veolia provided Engineer-Procure (EP) services and operates a produced water management facility at this oil field that features the first-ever installation of Veolia’s OPUS® (Optimized Pretreatment and Unique Separation) technology. In this case, Chevron San Ardo’s treated water is used in two ways – reused for steam generation, and released into aquifer recharge basins that replenish local water resources and allow Chevron to recover more oil. The reliable operations & maintenance of the plant is backed by a Veolia performance guarantee.

CHALLENGE

The process of extracting oil from the ground generates a volume of water that can range from 10 to 20 times the oil production rate. Historically, a portion of this water had been recycled and softened for reuse in steam generation, with the remainder going to local EPA class II injection wells for disposal. However the injection zone capacity is limited, which constrains full field development and daily production levels.

The raw produced water for this oil field is 200°F, and contains about 25 ppm free oil, 80 ppm TOC, 240 ppm silica, 26 ppm boron, 240 ppm hardness and 6,500 ppm Total Dissolved Solids (TDS). The project goal was to reduce the feed water TDS to less than 510 ppm and boron to less than 0.64 ppm for discharge, while achieving 75% water recovery across the treatment system and minimizing the volume of produced water requiring re-injection. For steam generation, the project goal was to reduce the feed water hardness to less than 2 ppm total hardness as CaCO3.

SOLUTION

Veolia provided Chevron with the first produced water facility in the world to use its OPUS® technology, a multiple-treatment process that removes contaminants sufficiently to meet the established requirements for discharge. The technology and services provided by Veolia enables the plant’s entire water cycle to be managed in a truly sustainable way, while simultaneously expanding oil production capacity.

Since the plant was commissioned in 2008, Veolia has operated and maintained (O&M) the facility for Chevron.  Under its O&M contract, Veolia provides operations for the plant, which treats a combined 150,000 barrels of produced water daily, and oversees the facility’s maintenance according to an established performance guarantee. Additionally, Veolia provides Chevron with on-site and off-site technical and engineering support to troubleshoot issues, maintain optimal operations, prevent failures and implement processes to help maximize oil production.

RESULT

Veolia’s innovative application of its OPUS® technology – groundbreaking for produced water management – has delivered exceptional value back to Chevron San Ardo. By developing a sustainable solution that allows up to 50,000 barrels per day of produced water for surface discharge and another 75,000 barrels per day for steam generation, Chevron is minimizing its environmental impact on water-stressed California by returning water to the aquifer recharge basins. And by avoiding deep well injection, Chevron has a long-term solution for managing produced water that limits its regulatory risk and supports expanded production activities.

Thanks to Veolia’s expert operations & maintenance staff who run the facility for Chevron, the produced water is consistently treated to levels that allow for surface discharge to replenish local water resources – a critically important factor for oil field operations and their social license to operate in California. With plant operations handled by Veolia and backed by a performance guarantee, Chevron can focus on its core operation of oil production.

By partnering with Veolia, Chevron San Ardo accomplished its objective of achieving a more circular, sustainable and reliable business operation.

Rethinking the oil and gas organization

December 2016, McKinsey & Company, www.mckinsey.com. Copyright (c) 2018 McKinsey & Company. All rights reserved. Reprinted by permission.

Organizational choices made during a time of resource scarcity need reexamination when the cycle turns.

When business cycles turn, cyclical industries can struggle to retool their organizations for the new environment. For instance, today’s oil and gas companies were developed in a time of resource scarcity. To get at those hard-to-find, difficult-to-develop resources, companies greatly expanded the role of their central functions—mandating them to set common standards, make technical design decisions, track company-wide metrics, and disseminate best practices. This worked well during a decade of high growth and high prices but created complexity that added costs, stifled innovation, and slowed down decision making. As these central teams expanded, general and administrative costs grew fivefold, hitting nearly $5 per barrel in 2014 (exhibit), with the biggest increases coming from technical functions such as engineering, geosciences, and health and safety.

Oil companies have cut support functions since 2014 but must consider more radical organizational changes as prices remain weak.

With prices now below $50 a barrel, that organizational blueprint is no longer sustainable. While companies have cut their support functions since 2014, the overall organizations supported by these functions are also smaller. This suggests further reductions in corporate functions will be needed, as well as new organizational models.

A more agile organization, with fluid teams and looser hierarchies, can lower costs and create greater responsiveness to today’s vastly different markets—ranging from megaprojects to less asset-heavy unconventional shale-oil and renewable-asset plays. Technologies such as networked sensors that generate and share data can help optimize production processes, while digitally enabled automation of routine manual activity can reduce human risk and spur productivity. Critically, the structures built to manage scarce talent and large-scale megaprojects will need to be fundamentally redesigned. We see two models arising: for lower-risk assets such as tight oil, a very lean corporate center with highly autonomous asset teams will suffice, while higher-risk, more capital-intensive assets will need a comparatively stronger center with deeper functional and risk-management capabilities.

For additional insights, see “The oil and gas organization of the future.”

About the author(s)

Christopher Handscomb is a partner in McKinsey’s London office, Scott Sharabura is an associate partner in the Calgary office, and Jannik Woxholth is a consultant in the Oslo office.

McKinsey: Operating models for oil and gas fields of the future

As the global energy transition accelerates, upstream operators must modernize and shift to more economic operating models. Where and how should they seek the next generation of efficiency gains?

As predictions of an early peak in oil demand take hold, upstream operators must find ways to produce more energy, more efficiently. Many have made significant performance gains in recent years. Across the sector, production costs are down 30 percent; safety incident frequency has fallen by a third, and production losses have declined by 15 percent since 2014. Yet more is necessary.

A marked spread in performance remains between the bottom and top quartile operators in every basin. On the UK Continental Shelf (UKCS), for instance, over 40 percentage points separate the lowest production efficiency asset from the top quartile. Similarly, the highest cost asset on the UKCS has twice the unit operating cost as the median and four times that of the top quartile in the basin.1

Furthermore, new technologies and ways of working are resetting top quartile performance levels. Our research2shows digital technologies may improve total cash flows by USD 11 per barrel across the offshore oil and gas value chain, adding USD 300 billion a year by 2025.

What distinguishes the success cases from the also-rans? What sustains their improvement momentum? Through our extensive experience of leading asset turnarounds in Petroleum Asset eXcellence, we observe that upstream operators who sustain their improvement momentum do two things well.

First, they challenge five interlinked drivers of their operating model in an integrated way (Exhibit 1). These drivers are: their asset strategy; physical equipment-in-place; work required to operate and maintain that equipment; workflows and methods used to conduct that work; and the competencies required from the team deployed to do it. While each driver will yield some efficiency gains when used alone, in aggregate, they can more than double the value potential of existing operations.

Second, having had one go at improving their operating model, these operators are willing to build on what did not work in round one, and take a second, third, or even fourth look. In fact, they build a continually evolving operating model that achieves higher and more predictable production performance, operating costs for a ‘lower forever’ price environment, and smaller, flexible and more diverse teams that are better suited to the industry’s aging pool of skilled labor.

Exhibit 1
What do successful operators do well?

This article lays out a concrete logic that any operator might use to develop a continually evolving operating model and illustrates through real examples the success factors of making this change happen.

Developing a clean-slate vision of your operating model

In early 2015, an operator with upstream assets in various life stages found itself with negative cash flows, declining production and escalating costs. A vertiginous price drop and unconvincing track record of operational performance made any prospect of recovery seem unlikely. The operator went back to a clean slate: it took a hard look at its field and hub strategies—reprioritizing its efforts across near-field exploration, wells-reservoirs-facilities management and asset rejuvenation; made radical choices to optimize lifting costs and staffing levels; and pursued capital productivity relentlessly across its portfolio. Over the next year, as the operator’s competitiveness improved, its confidence rose as well.

It took another look at its operating model, replicating this end-to-end clean-slate approach, and emerged with an ambitious agenda to restore positive cash flows within two years. Since then, this operator has divested non-core assets, rezoned unwanted surplus capacity on declining assets, improved front-line agility, and embraced digital technologies. With a continually evolving operating model, it has reverted to positive cash flows a year earlier than planned, marking a first in its recent history.

How did the operator build a clean-slate vision of its operating model? What logic does it apply every year? Exhibit 2 highlights the five interlinked drivers of operating model redesign and provides a checklist of questions any operator might ask itself.

Exhibit 2

Leading upstream operators maintain a coninually evolving operating model.

1. How does your asset strategy fit with your asset’s life stage?

Exploration and production (E&P) companies rarely look at asset strategies in operational excellence programs. This is a missed opportunity. Clean-slate asset strategies help operators make deliberate choices on which fields to grow, operate as mature, swap with others, abandon, or divest. A Western European operator with mature operations realized that half the fields in its portfolio would generate 95 percent of its future cash flows. Consolidating the portfolio would free up scarce capital and talent for its most productive assets with material remaining reserves. Moreover, legacy ownership structures concealed bottlenecks in third-party infrastructure: this restricted current operating capacity and the ability to mature reserves through production. Redrawing portfolios in line with which operator-controlled critical processing capacity and evacuation routes—swapping assets and acreage with contiguous operators, for instance—could improve the basin’s future economics and simplify day-to-day operations for individual parties.

A regular discipline of considering clean-slate asset strategies—commonly in an annual cycle—helps revisit field development plans and improve recovery rates. An African client with a portfolio of 800 closed-in wells concluded that intervening in a mere 5 percent of the closed-in well stock could add 30 kboe/d in the first year, with payback also within the same period. It made wells and reservoir management a top priority in capital allocation and operational plans across its upstream portfolio.3

Would you like to learn more about Petroleum Asset eXcellence (PAX)?

More than all else, clean-slate asset strategies enable customization of our remaining four drivers based on whether an asset is going through growth or decline. Operators committed to building and maintaining additional capacity, such as capital-intensive facilities improvement programs, only where there are remaining reserves and future value potential, or they eliminate expensive optionality wherever the asset’s maturity makes it irrelevant to future value creation.

2. What is the leanest physical footprint for your asset?

The physical footprint of an asset has always been a major driver of project economics. With increasingly small and stranded reserves and limited discretionary spending, it has become the single largest factor in project break-evens. Additionally, the physical footprint shapes operational processes and determines the structural limits of operating cost optimization across asset lifecycles. Examples of these limits include deck space, number, and type of crane, storage and layout, and redundancy in installed equipment. We recommend that operators consider the total value of owning their physical footprint—in design and in operations.

For new builds, considering the total value of owning their physical footprint may lead to smaller, modular, unmanned or energy self-sufficient designs. A North Sea independent used a standard platform design to shorten the engineering process and achieve first gas within 18 months versus industry averages of 30 to 36 months. The standard topsides—developed for two marginal fields were usable in other fields within a comparable range of gas throughput. The modular jacket was suitable for similar shallow water resources. Solar and wind power generation with battery storage reduced air emissions and offered energy self-sufficiency. Standardization and modularity rationalized maintenance costs just as much as FEED capital. As routines were replicable across the portfolio, a standard campaign-based maintenance approach yielded material synergies in engineering, work preparation, and spares management.

For mature assets, standard subsea design and equipment improves the economic attractiveness of brownfield expansions. Besides, obsolescence, fatigue or corrosion issues can all serve as triggers to make the asset easier and more economical to maintain. One operator in West Africa replaced traditional flowlines with thermoplastic ones. With better corrosion resistance, higher asset integrity and longer life, these new materials drastically extended schedules for inspections and maintenance routines. In a different example, a North Sea late-life asset systematically challenged the equipment in place to reduce surplus capacity in power generation, compression, and storage vessels. The lower physical footprint eliminated 25 percent of required maintenance hours and allowed redeployment of the maintenance team to more pressing pre-Cessation-of-Production imperatives. With a total value of ownership approach, this operator tackled the growing divergence of needs from means in its initial operating envelopes, and structurally reduced its operating cost base.

3. How can you compress your workload?

In asset turnarounds, we commonly encounter over-reliance on time-driven maintenance philosophies. Equipment strategies are set to standard specifications and adapted marginally as assets move through steady-state production into decline. The outcome is inflated workloads and costs, combined with an operations and maintenance plan that does not adapt adequately to emerging reliability or integrity challenges. Our proprietary maintenance benchmarks indicate that there can be a 5 to 10 percentage point differential in production efficiency and 20 to 30 percentage point differential in maintenance costs between top quartile operators and the also-rans.

Success cases exercise both traditional and digital levers to optimize the overall operations and maintenance workload. Traditional choices include stepping away from a 100 percent inspection approach to risk-based strategies in mid-life assets or run-to-failure for late life ones. However, next-generation operations and maintenance is centred on equipment sensors for performance data, advanced analytics and machine learning to predict and avoid failures, with maintenance or replacement on an as-needed basis. This end-to-end digitally enabled system makes activity workloads smaller and more predictable, feeds into more efficient and economic management of materials and people, and levels the operational risk-return profile of an oil and gas business towards the steadier profile of a manufacturing one.

A mature asset operator makes timely interventions through failure prediction to reduce asset downtime. Predictive maintenance incorporates sensor data and condition monitoring results in a machine-learning algorithm, which recognizes patterns associated with different failure modes on a specific machine. As no two machines are alike, the learning algorithm can customize trigger points for failures on each individual piece of equipment, thus allowing maintenance teams to plan better, reduce the incidence and severity of failures, and compress the time to recovery. The operator has reduced downtime on critical machines by as much as 30 to 50 percent.

Most significantly, predictive techniques are redefining the scope and composition of maintenance activities, enabling organizations to have smaller maintenance teams and lower operating costs. Exhibit 3 shows the expected future impact for this mature asset operator.

Exhibit 3

Illustrative example – a full scale-up is expected to transform maintenance scope, efficiency and costs

Predictive techniques are relevant regardless of the life stage of an asset. However, operators may choose to match upfront investment with the remaining life of their assets. While an overhaul of multiple systems into a single platform may have a positive business case at an early-life asset, a mature asset may better use an integrated platform that consolidates scattered data from legacy systems and rapidly digitizes key operational workflows.

4. How can you multiply the work hours you obtain?

Upstream operators consistently appear middle of the pack in time-in-motion studies, reporting an average of 20 to 30 percent of a shift as productive. However, world-class process-based industries and leading upstream operators can extract 7 hours of value-added work in a 12-hour shift; in some cases, particularly in campaign-based interventions, they can achieve 8 to 10 hours of useful work per shift.

Lean tools continue to be the mainstay of improving productivity. In addition, the vision for next-generation operations and maintenance is to put the employee at the core, flipping the model from ‘thinking like the manager’ to ‘thinking like the technician.’ This means that anything in the way of the technician’s doing value-added work must be minimized, or where possible, automated.

At an offshore asset, we shadowed technicians to uncover their pain points. Three pain points emerged at the top:

  • A manual and substantial data reporting burden that went beyond industry compliance requirements: this trapped the offshore installation manager and supervisors at their desktops.

  • A time-based schedule and planned loading approach in compliance with company maintenance execution standards: often, this imposed twice as many work orders and doubled the time per work order relative to actual execution data. While the asset was plan compliant, the maintenance teams had effective surplus capacity.

  • Focus on a process rather than equipment or systems: this prompted compliance with complex process steps and reporting to relevant technical authorities over equipment care and ownership.

Addressing technician pain points along the maintenance execution process was the main lever for improving productivity. The operator reacted with three innovations:

  • Digitization of key workflows had the secondary benefit of allowing most compliance data to be tracked autonomously and routed to a secure site for reporting to the parent company or regulator. This freed up offshore supervision capacity. Gradual deployment of IoT and mobile devices over the next two years was expected to provide further relief through real-time reporting.

  • Time-based scheduling and plan loading was replaced with the use of actual execution data captured in digital work tracking systems. Surplus capacity in maintenance teams could be redeployed to liquidate maintenance backlogs or better utilized for standby work. The operator was beginning to implement next-generation control of work, with increased automation in integrated planning, permit-to-work processing, and work notifications.

  • Process simplification liberated front-line time and capacity. Simple engineering was delegated to an offshore engineer who supervised ‘find and fix’ and accelerated simple jobs without routing them back to a central team or contractor.

  • But front-line equipment care and ownership required organizational refinements. This brings us to the fifth driver of next-generation operating models.

Oil-gas-1536x1536-500_Standard

Rethinking the oil and gas organization Read the article

5. What is the minimum organization you need to achieve your business goals?

Upstream companies typically start and end reorganizations with the organization itself. Notwithstanding its limited impact on resourcing levels, this approach constrains companies’ abilities to visualize how they might adopt new technologies, such as digital tools, or introduce organizational agility, a premium functionality in our world of relentless change.4

Building a next-generation operations and maintenance team begins with drafting the minimum capabilities required for steady-state operations. At its most elemental, an operator takes a zero-based budgeting approach: desktop analyses and cross-functional scrums help set the size and shape of the smallest team with the skills to conduct the asset’s baseload activity set, and add incremental capacity only if there is a strong business case for it. So, while an early-life asset operator might aim for equipment familiarity through hands-on commissioning, a late-life asset operator would accommodate capacity to address integrity challenges. Even with this minimalist mindset, it is easy to rationalize why additional technicians should be on standby for unanticipated trips.

We have seen assets operating with teams less than half the prevailing norm, and specific activities, such as routine well interventions for reservoir data acquisition, run with team sizes of around 25 percent of what is typical. Three choices facilitate flexible access to the required capabilities:

  • Fluid teaming. Multiskilling through a second service role, combined operations and maintenance roles or a secondary competence is more talked of than implemented. Many technicians often have broader competences than trades-based staffing models allow. In next-generation operations and maintenance teams, we go further towards an agile organizational structure, designed around equipment ownership. For instance, an equipment improvement team is cross-functional with representation from challenge areas, such as engineering, maintenance or supply chain. It is self-managing and has end-to-end accountability for the reliability of its equipment. Each team sets out with a performance target associated with its equipment and has compensation tied to the results achieved.

  • Redefining skill requirements. As operators increasingly deploy digital technologies—improving work-scope predictability—unmanned operations become more feasible. An integrated remote operations centre staffed with data scientists and operations-skilled digital translators—who marshal advanced analytics models for production optimisation—is no longer inconceivable.

  • Use of innovative partnerships for non-core and peak load activities. Contracting is the traditional option for flexible access to skills. In a 21st-century organization, this might look more like a risk-sharing partnership. In a recent example, a large upstream oil and gas company established a long-term contract with two asset management contractors to increase production in a mature field. While reserves continued to be owned by the upstream company, the contractors operated under a cost recovery model with a bonus for how quickly they increased unit cash flows. Tailored alliances across the sector, with distinct contributions from participating upstream companies, can go beyond supply chain relationships. A recent merger of two operators combined the operational excellence of a leaner independent with a larger incumbent’s superior basin expertise. In the year following the transaction, the new entity nearly doubled production, providing greater financial robustness and a platform for long-term growth to both partners.

Ultimately, reorganizations must ensure access to the right talent within the asset’s business context. Organizational agility can achieve this without compromising process and personnel safety. Even with fluid teaming, the roles of the offshore installation manager or the site supervisor as safety custodian remain intact.


Achieving a continually evolving operating model will require new approaches to operational transformations, skill sets, and ways of working among the people who will make it happen. While the traditional transformation roadmap to arrive at well-defined goals is still relevant, an agile development and implementation process will be needed to accommodate greater collaboration and learning on the go. Multifunctional teams will work together on end-to-end processes to create new solutions, using shorter sprints to design minimum viable products, and being happy to fail fast as long as they learn in the process. This will put front-line teams and middle management at the heart of the transformation. And operators will have to invest in building both their belief in the value potential and their capability to deliver the required changes.

None of this will be easy, but it will be necessary if oil and gas operators are to attain the next wave of structural improvements amid the uncertainties of an ever-evolving industry.

December 2017, McKinsey & Company, www.mckinsey.com. Copyright (c) 2018 McKinsey & Company. All rights reserved. Reprinted by permission.

ExxonMobil to Join Stanford Strategic Energy Alliance

  • Builds on Global Climate and Energy Project’s 15 years of success
  • Strong science and exploratory research to develop low-carbon energy solutions
  • $20 million commitment in addition to ExxonMobil’s GCEP investment of more than $100 million
  • Expands company’s collaborative work with academic and research institutions around the world

IRVING, Texas–(BUSINESS WIRE)–Exxon Mobil Corporation (NYSE:XOM) today announced that it will become the first founding member of the new Stanford Strategic Energy Alliance, an initiative that will examine ways to improve energy access, security and technology while reducing impacts on the environment. As part of its commitment, ExxonMobil will contribute $20 million in funding over five years to research and develop lower-carbon energy solutions.

The Stanford Strategic Energy Alliance builds on the success of the Global Climate and Energy Project (GCEP), also led by Stanford, which focused exclusively on low-emissions, high-efficiency energy technologies. ExxonMobil has sponsored GCEP since its inception in 2002 with a commitment of $100 million and additional contributions toward specific projects. In its 15 years of work, GCEP has evolved into a pioneering collaboration of scientists, engineers, researchers and students focused on identifying breakthrough low greenhouse gas emission energy technologies that could be developed and deployed on a large scale.

“ExxonMobil has worked with Stanford to advance low-carbon technologies over the last 15 years, and we’re excited to be the first founding member of this new endeavor,” said Bruce March, president of the ExxonMobil Research and Engineering Company. “Identifying scalable solutions for addressing the dual challenge of supplying energy to meet global demand while minimizing the risk of climate change is one of our core missions. We are continuously looking for ways to improve existing supply options and manufacturing processes while managing carbon intensity.”

Since its creation, GCEP has sponsored more than 100 research programs in the United States, Europe, Australia, China and Japan, and has resulted in over 900 papers in leading journals and more than 1,200 presentations at conferences. Building on fundamental science, significant advances have been made in the areas of photovoltaic energy, renewable and lower carbon fossil fuels, batteries and fuel cells. More than 60 technologies have also been developed and 15 patents have been issued. Multiple companies have also started up as a direct result of or inspiration from GCEP research.

The new Stanford Strategic Energy Alliance will pair industry alliance members and Stanford professors who share common research objectives across the spectrum of energy topics from science and engineering to policy and business. Managed by the Stanford Precourt Institute for Energy, the alliance will also fund some early-stage research at the direction of its faculty leadership.

ExxonMobil’s support for the Stanford Strategic Energy Alliance expands the company’s collaborative efforts with other academic and research institutions that are focused on developing an array of new energy technologies, improving energy efficiency and reducing greenhouse gas emissions. The company currently works with about 80 universities in the United States, Europe and Asiato explore next-generation energy technologies, including founding members of MIT Energy InitiativePrinceton E-ffiliates Partnership and University of Texas at Austin Energy Institute.

Source: Exxon Mobil Corporation

ExxonMobil
Media Relations, 972-940-6007

  • Be the first to know about news, events and more.

    X
    We respect your privacy. View privacy policy.

     

  • Most Popular Topics

    Editor Picks