Case Study: Large E&P Operator in Permian Basin Uses ZerO2 to Reduce Emissions, Capture Full Value of Production Stream

Situation

A multinational exploration and production company with significant operations in the Permian Basin needed a solution to continue developing its oil and gas assets in compliance with stringent emissions standards and without increasing lease operating costs or reducing economic returns. The operator’s area of operation covers over 100,000 net acres reaching from the city of Midland in west Texas to the border of New Mexico. The company recently told the market it plans to invest heavily in the Permian Basin by 2020 to grow production significantly. To achieve its growth plan, the operator required a solution to proactively handle emissions of Volatile Organic Compounds (VOCs) from tank vapor gas and Nitrogen Oxides (NOx) produced when VOCs are burned using flares or combustors. Importantly, the solution needed to have a minimal impact on operating costs and not require significant capital investment.

Solution

The operator turned to EcoVapor for a solution to handle its emissions of VOCs and reduce or eliminate NOx while avoiding any adverse impact to operations, cash flow or financial returns. EcoVapor applied its ZerO2 oxygen removal technology in a staged rollout covering an initial five production pads. Born from EcoVapor’s proprietary vapor recovery technology, its patented ZerO2 systems offer operational flexibility, modularity, and reliability. ZerO2 units can be all-electric, using existing lease power or gensets, are skid mounted and have a small 4’x4’ footprint so they can be installed on any production pad. With no moving parts, ZerO2 units are extremely reliable.

The ZerO2 rollout proceeded as follows:

  • September 2017. Three ZerO2 units installed and run in parallel on the first production pad, handling over 1.0 MMcf per day of flash gas.

  • October 2017. Three more ZerO2 units installed on second production pad handling 800 Mcf per day of flash gas.

  • December 2017. Three additional ZerO2 units installed on third production pad handling an initial 750 Mcf per day. Additional development drilling and turning more wells to production increased production and in April 2018, two more ZerO2 units were installed to process flash gas volumes of up to 1.5 MMcf per day.

  • July 2018. Six ZerO2 units were installed on a fourth production pad with the capacity to process an expected 1.8 MMcf per day of flash gas.

 

Results

The ZerO2 solution gave the operator a scalable, efficient and reliable method to process rising flash gas volumes generated from the continued development of its Permian Basin asset position.

The multiple operational, economic and regulatory benefits of implementing the ZerO2 solution are summarized below:• Eliminate the flaring or combusting of flash gas by capturing 100% of tank vapors, as compared to typical efficiency levels of 80% for competing solutions.

  • Easily achieve compliance with current emissions standards and even more stringent regulations likely to be introduced by federal and state regulators in the future.

  •  Reduce Reid Vapor Pressure (RVP) by flashing gas at atmospheric pressure and capturing it before the oil is transported.

  • Generate incremental revenue and profits by capturing and selling rich, high-value tank vapor gas previously lost by flaring or combusting.

  • Improve the quality of sales gas by removing oxygen from the gas stream and ensuring consistent, ongoing production and revenue by avoiding the triggering of slam valve safeguards.

  • Maintain operational reliability by adopting the ZerO2 units, which have no moving parts and minimizes the impact on unexpected maintenance and repair costs.

This table summarizes the estimated emissions reductions based on installations made to date. Emissions reductions are estimated based on an 80% efficiency rate generally attributed to Vapor Recovery Tower technology. To put the impact of the total estimated emissions reductions in perspective, the reduction in VOC emissions is equivalent to
removing approximately over 28,000 passenger vehicles from the nation’s roads for a year, using per-vehicle estimates from the EPA’s publication Average Annual Emissions and Fuel Consumption for Gasoline-Fueled Passenger Cars and Light Trucks.

Based on the successful applications of the ZerO2 solution, the operator requested that EcoVapor design a larger unit to handle greater volumes of flash gas expected to be produced by its Permian Basin growth plan. These new units can each process 1.2 MMcfd and will be deployed in the second half of 2018.

Contact us today at 1.844.NOFLARE (844.663.5273) or Info@EcoVaporRS.com to see if ZerO2 is right for your operations and if you’re ready to Flare Less, Sell More.

Case Study Permian Basin

 

Study: Filtration a Viable Option for Produced Water from the Marcellus Shale

The rising production of natural gas from hydraulically fractured wells in Appalachia generates along with it contaminated produced water that must be carefully disposed of. Researchers at Pennsylvania State University say that producers would be wise to consider the environmental risks associated with the most commonly used disposal practice of underground injection, and instead adopt more environmentally friendly and sustainable innovations in water filtration.

The study, Sustainability in Marcellus Shale Development, published by Penn State’s College of Engineering in conjunction with Chevron, notes that produced and flowback water from the prolific Marcellus Shale in Pennsylvania is most commonly disposed of through injection into saltwater injection wells drilled far below the deepest known aquifer.

But although this method is the cheapest available and most frequently used, it brings with it the potential for surface spills and casing leaks that can contaminate freshwater, as well as the risk of activating dormant faults and causing earthquakes.

Disposing Fracked Water

“During the hydraulic fracturing process, water and chemicals are used to stimulate the fissures in the rock in order to extract the natural gas. Water is mixed with sand and other chemicals and then injected into the well. After creating cracks in the Marcellus Shale, flowback water, a brine solution with heavy metals and chemicals, quickly comes back. Typically, this flowback water is stored in tanks or pits before treatment, recycling, or disposal,” according to the report, co-written by Kyle Bambu, Mike Spero, and Harry Polychronopoulos.

The most common way to dispose of this produced water is by pumping it into saltwater disposal wells that are drilled hundreds below the deepest known aquifers. But Pennsylvania’s unique geology is not well suited for such wells. At the time the study was published in Fall 2016, there were 144,000 Class II injection wells in the US and only eight of them were Class II salt water disposal wells in Pennsylvania. These eight wells combined accepted 8,667 barrels per day of brine, while similar wells operated in Texas can each dispose of more than 26,000 b/d of brine.

According to the report, the average cost to dispose of one bbl of fluid can range from as low as 25¢/bbl if the oil company operates its own disposal well, to anywhere from 50¢/bbl to $2.50/bbl if a commercial saltwater disposal well is used. The cost of using disposal is further increased by the cost of transportation.

“In northern Pennsylvania, where commercial disposal wells aren’t plentiful, the brine water may have to be transported to Ohio or West Virginia. This can increase costs by $4.00 to $6.00 a barrel, bringing the net cost of disposal in the Marcellus Shale region to $4.50/bbl to $8.50/bbl,” the study said.

The use of underground disposal wells is not without risk, and frequent concerns include the potential for groundwater contamination and induced seismic activity. In Youngstown, Ohio, the researchers noted that a Class II disposal well for fracking wastewater was linked to seismic activity after it activated a previously unknown fault line. That well was blamed for 10 minor earthquakes, the largest of which is a magnitude of 3.9. A spate of earthquakes in Oklahoma in recent years has likewise been linked to the increased injection of water into disposal wells.

The need to dispose of produced water in Pennsylvania has become more pressing in recent years as natural gas production from the prolific Marcellus and neighboring Utica shales has taken off.  Data from the federal Energy Information (EIA) Administration show that output from the shale formations more than tripled Appalachian gas production from 7.8 billion cubic feet per day in 2012 to 23.8 Bcf/d in 2017 (EIA). These plays are credited for driving growth in US natural gas production since 2012 and have played a critical role in enabling low domestic prices and increasing exports.

The Water Filtration Alternative

Researchers note that a number of alternatives to disposal wells are emerging at varying levels of cost. These largely involve treating the produced water to remove its various contaminants, which can include radioactive substances, heavy metals, and high concentrations of salt. Traditional wastewater treatment plants cannot be used because they lack the sufficient processes needed to clean this water.

The most cost competitive alternative to underground injection highlighted by researchers is the option of using a membrane to clean the brine produced water. The company Oasys Water offers a system that drives the brine solution through a series of semi-permeable membranes at a cost of nearly $2/bbl of water. The water that emerges from this process is clean enough to be discharged into streams or drainage systems.

Other potential treatments on the horizon that require further research include the option of boiling the water. However, researchers note that the cost of using this process can run upwards of $17/bbl and the heavy salt causes extreme wear and tear to the requisite industrial boilers, resulting in massive equipment replacement costs.

Lastly, the study says the process of electrodialysis could be used to separate water from contaminants. Researchers at the Massachusetts Institute of Technology have found that an electrical current can be used to separate fresh water from a salty solution. Salt is an effective conductor of electricity and successive stages of electrodialysis can remove most contaminates. But this process has not been tested in the oil and gas industry and there are not commercial treatment options available.

Researchers ultimately concluded that while the common practice of injecting produced water into disposal wells is relatively cheap, this practice comes with high environmental risks. These risks include the potential for groundwater contamination that is caused by surface spills or breaks in the tubing for saltwater disposal wells and even induced seismic activity.

At present, the impetus for improving produced water disposal practices is driven primarily by the sustainability practices of each producer and not government regulations. Researchers found that the oil and gas industry is exempt from some of the most stringent federal environmental regulations, like the Safe Drinking Water Act the Clean Water Act, but noted that states have been working to impose their own rules to address areas of concern. For instance, Pennsylvania in recent years adopted new guidelines intended to prevent spills and releases of harmful substances.

Today’s Best Option

The study ultimately recommends Oasys Water’s membrane filtration as the best option for disposing of produced water today. Researchers said that while using this method can result in slightly higher costs for water treatment and transportation, it appears to be the most sustainable solution until other technological advances are advanced in the future.

“This (membrane) system was recommended because of its relatively cheap cost yet adherence to sustainability and environmentally friendly concerns,” the study said.

To read a PDF of the Penn State study, click here.

Schlumberger’s Stewardship Tool

Schlumberger Global Stewardship

A long-standing culture of social and environmental stewardship worldwide

The Schlumberger Global Stewardship journey is continuing to gain momentum as the company works with customers, investors, NGOs and other relevant organizations to achieve its environmental, social, and governance (ESG) objectives.

The most recent Schlumberger Global Stewardship Report outlines the company’s approach to ESG that is rooted in a long-standing culture of social and environmental stewardship worldwide. As a business and a community of individuals, Schlumberger focuses on areas where its organizational strengths, technological expertise, and cultural values can have the greatest impact.

The report describes Schlumberger Global Stewardship initiatives such as:

Technological expertise

The company has developed software technology that incorporates sustainability into its engineering and operational practices by modeling efficiency gains at the wellsite that yield a lower environmental footprint. By modeling its environmental footprint relative to metrics such as emissions, air quality, water use, noise, and chemical exposure, the unique web-based software is used to evaluate potential projects related to well stimulation. This software, known as the Stewardship Tool, has played an important role in the development of many next-generation technologies, such as the BroadBand unconventional reservoir completion services and the Automated Stimulation Delivery Platform.

Sustainable development

In 2017, Schlumberger became the first associate member of IPECA, the global oil and gas industry association for environmental and social issues. Schlumberger participated in IPIECA’s development of Mapping the Oil and Gas Industry to the Sustainable Development Goals: an Atlas, a publication describing the implications of the United Nations Sustainable Development Goals (SDGs) for the oil and gas industry and how IPIECA members may provide support in achieving these goals.

Community outreach

Schlumberger has a long-standing commitment to science and engineering as well as health and safety. This forms the basis of the company’s community outreach initiatives which includes programs that support science, technology, engineering and mathematics (STEM) education as well as health, safety and environment (HSE) workshops for youth—both local and global—many of which are supported by employee volunteers.

To learn more about these and other best practices, download the latest edition of the Schlumberger Global Stewardship report here.

Published Date: 09/14/2018

Source: www.slb.com

 

Video

Drill cuttings and oil waste plant installed directly at the oilfield

TDP-2 pyrolysis plant designed for drilling waste treatment was installed at oilfield of oil and gas company. The plant is capable to obtain the valuable products from oil sludge thus there is no need in waste depositing. More details: http://tdplant.com/ Музыка: No Copyright Free Music GENERIC MUSIC https://youtu.be/X-ZwX5lyyy4?list=PLI…

Published on Feb 7, 2017

YouTube

To make sustainability real, make it personal

Neil Hawkins and Joe Árvai

Marc-Grégor Campredon 

Dow employees applying real-time learnings from the Sustainability Academy to their team project, designed to support one of Dow’s 2025 Sustainability Goals.

From the perspective of business, engaging employees is critical to developing and advancing a company’s sustainability goals. The feeling is mutual from the perspective of current, not to mention future employees: A company’s sustainability goals are important to the process of attracting and retaining the top talent.

But meaningful engagement across the entire spectrum of a company’s operations can be challenging. Many employees are often unsure how their job roles connect with a company’s sustainability programs and strategies, and many companies find it challenging to integrate — and inspire — leadership on sustainability in the day-to-day activities in their workforce. The net result: Employees often end up being an underused and undermotivated resource in a company’s sustainability journey.

Dow recognized these challenges early on and began to address them with its company-wide commitment to 2015, and now, 2025 Sustainability Goals, which have sought to redefine the role that business plays in society. A primary objective of the goals is to mobilize the human element — employees, suppliers, customers and the communities in which they live and work — to improve the well-being of people the world over.

To take the 2025 goals to the next level within the company, Dow collaborated with the Erb Institute of the University of Michigan in 2017 to design and launch the Dow Sustainability Academy. The Dow-Erb partnership has proven to be incredibly successful, productive, fun and, yes, sustainable. Dow brought to the table its decades of experience on making business sustainability real, and Erb brought its 20-year track record of being at the leading edge of research and teaching at the intersection of business, society and the environment.

The result of this partnership is a business-sustainability leadership and development program that provides Dow employees with the tools and insights they need to bring sustainability into their daily work. As part of the academy, Dow employees — selected as part of a competitive, application-based process — spend a week in training at the Erb Institute.

During this time, they learn from and interact with some of the world’s leading experts on a wide range of topics, from making the business case for sustainability and the policy backdrop against which business sustainability unfolds, to hands-on tools for implementing the elusive triple bottom line. When the in-class sessions come to a close, academy participants work on real-world projects related to one of the Dow sustainability goals and are given six months to use what they learned in Ann Arbor to complete them.

Recently, we had the pleasure of watching project teams from the second group of academy members present their project solutions to Dow leaders, as well as to the next contingent of employees chosen to be part of the academy. Each team passed along their advice to their successors in the academy, and it struck us while we listed to them that their learnings apply to not only academy participants but to anyone seeking to collaborate, stretch and grow at their company and in their career.

Here’s some of what we heard:

Avoid solutions that are attractive only because they are obvious or easy. One team was asked to determine the theoretical limits of how much emissions can be reduced from each Dow site, plant, equipment and technology. The aim was to help Dow achieve its 2025 Operations Sustainability Goal of growing the company globally over the next decade without allowing the company’s greenhouse gas emissions to exceed its 2006 baseline.

Team members had to reach outside their area of expertise and talk with dozens of people across Dow sites to understand and catalog the possible opportunities. By asking questions and — importantly — challenging assumptions about what previously were thought to be the performance range of various technologies and equipment, the group was able to identify additional, significant opportunities for reducing emissions.

When you face challenges, remember that your vision and passion are your North Star. All the projects carried out by academy participants require engaging in complex systems and with multiple stakeholders. In this kind of environment, sustainability objectives aren’t easy to define, and decisions must be made in an information-rich environment characterized by high levels of uncertainty.

One team, tasked with reducing food waste at a Dow site as part of the company’s goal to advance a circular economy, admitted that it was easy to get lost in rabbit holes or mired in red tape. However, by being true to their vision of what was possible, and by being persistent — “no” was not an acceptable answer — they were able to find both a workable solution for composting at a Dow site and identify local groups receptive and able to receive the compost.

Make “change agent” part of your job description. There’s a saying at Erb: When it comes to sustainability in business, be prepared to invent the job you want and then go do it. In other words, don’t wait to be anointed; being a change agent is a title you can bestow upon yourself.

The same goes for participants in the academy. One group was tasked with identifying a single project that aligned neatly with Dow’s valuing nature goal; the requirements were that the project had to be good for business but even better for the natural environment. Rather than identifying just one project, members took it upon themselves to identify one project each, for a total of three. From creating sustainable prairie habitat at company headquarter and planting native grasses to reduce erosion at a Seadrift, Texas, site to waste reduction at a plant in Freeport, Texas, these projects were heralded for their ability to cut emissions, rehabilitate the environment and bring business value to Dow.

As we get set to embark upon our fourth Dow Sustainability Academy, we could not be more delighted by what we have seen from those who have graduated from it. By thinking critically and creatively about sustainability’s role on the job, employees not only found answers to drive Dow’s sustainable practices but established critical leadership skills.

They learned to apply ingenuity and entrepreneurial spirit to address sustainability challenges and to respond to sustainability opportunities.

They began to see those sustainability decisions are real opportunities for setting and then achieving objectives and that business sustainability really is a journey that will require vision, leadership and course corrections along the way.

And they found that no matter their job titles, they actively could incorporate tools for sustainability into their jobs — and into their lives outside of work — in order to be champions for lasting, positive change.

That’s a win for employees, for Dow and Erb, and — most importantly — for society

 

Source: GreenBiz

TED Talk on methane and the oil and gas industry

This TED Talk heralds a new era in fighting climate change, from space

Watch this video to learn about a bold, new initiative to combat global warming

EDF and partners are launching a rocket to put a new satellite in orbit that could change the course of global warming in our lifetimes.

MethaneSAT will gather data about a pollutant – methane – that’s warming the planet, and put that data in the hands of people who can easily fix the problem.

EDF President Fred Krupp unveiled the groundbreaking project at TED’s flagship event in Vancouver, British Columbia, as part of The Audacious Project, successor to the TED Prize.

Just the first step will have the same near-term climate benefit as shutting down one-third of the world’s coal-fired power plants.

Fred Krupp, EDF President

Fred Krupp, EDF President

Our goal is to cut methane emissions 45 percent by 2025, and the data gathered by this satellite will make that possible. Nothing else will have the same kind of near-term impact at such a low cost.

The power of information

To learn the magnitude of the problem with methane, we collected data with drones, planes, helicopters, even Google Street View cars. It turned out that emissions are up to five times higher than what the government is reporting.

So we didn’t wait for Washington. We published our research, shared it with everyone and saw them take action. Leading oil and gas companies replaced valves and tightened loose-fitting pipes. Colorado became the first state to limit methane pollution. California followed suit, and the public joined in.

By bringing the right people to the table – and leveraging the best of technology, science, data and partnerships – we were able to make the invisible visible, empowering everyone. This enabled us to find new solutions that can be taken to scale and make a lasting impact.

And that’s what the emerging Fourth Wave of environmentalism is all about.

Source:  EDF Environment Defense Fund

SWIT™ Technology

The SWIT™ technology provides high-quality water in areas that are essential for increasing sweep efficiency and avoiding reservoir souring. By creating a total subsea waterflood system, increasing IOR possibilities beyond what is achievable by traditional topsides water injection systems, the SWIT Technology fills a technology gap.

The Seabox™ unit is our base disinfection and sediment settlement unit. The Seabox unit will encompass three different treatment processes. At the intake, the seawater passes through an electro chlorination grid where sodium hypochlorite is mixed into all of the passing seawater. Inside the Seabox unit, the seawater will be allowed to react with the chlorine for more than one hour. At the same time, particles larger than 15 microns will be settled out. At the outlet from the Seabox unit, a second electrochemical process producing hydroxyl radicals is used for final bacteria kill and to ‘decompose’ biological matters.

The current Seabox standard unit will treat 40 000 bpd of seawater and are operated and controlled by our proprietary control system. Other capacity units can easily be designed using our standard components. The unit has no moving parts and only the Treatment Unit of the Seabox unit needs to be replaced for maintenance at regular intervals. Typically every 4 years.

The SWIT Technology consists of different configurations, where the Seabox unit is the cornerstone for providing a fully disinfected water with the bulk part of particles removed. Combined with microfiltration and membranes, we provide completely particle-free water, sulfate reduced of sulfate free water and low salinity water. Water qualities can be adapted to the reservoir-specific needs.

 

Published with permission from NOV.

Click here to learn how to keep water in its place

 

 

Video

Turn off the light!

The Crude Life Interview: Bill Wren, The University of Texas at Austin

Bill Wren, The University of Texas at Austin, explains how The University of Texas at Austin’s McDonald Observatory and the collaboration with the Permian Basin Petroleum Association (PBPA) and the Texas Oil and Gas Association (TXOGA) to reduce light shining into the sky from drilling rigs and related activities in West Texas. The excess light has the potential to drown out the light from stars and galaxies and threatens to reduce the effectiveness of the observatory’s research telescopes to study the mysteries of the universe.

Source: The Crude Life Content Network

YouTube

 

Video

Our fresh commitment to low carbon

The world is demanding more energy every day to support growth and prosperity. At the same time, it’s demanding energy with fewer emissions. At BP we’re taking on this dual challenge across all of our business activities. We’re growing our business, providing more energy to the world. And at the same time, we’re reducing emissions in our operations, improving our products and creating low carbon businesses. This is how BP is helping the world transition to a low carbon future. As part of this, we are setting some new and important targets. Head to bp.com/energytransition for details.

Published by BP on Apr 16, 2018

YouTube

 

Most Popular Topics

Editor Picks