Chevron Uses Recycled Water to Boost Production at Aging California Oil Field 0

Chevron is using a sophisticated water treatment system to clean up produced wastewater at a Southern California oil field and using that recycled water to boost recovery from a previously idled portion of the field – demonstrating along the way that what’s good for the environment can also be good for a company’s bottom line.

The Optimized Pretreatment and Unique Separation (OPUS) system was installed at the San Ardo oil field by water treatment company Veolia a decade ago and the company continues to oversee it today.  The installation is the first of its kind to use the OPUS system as part of a produced water desalination facility and the cleaned up water is either used in steam flooding operations or safely disposed of on the surface.

San Ardo is one of the most prolific fields in California. It was initially discovered in the late 1940s and has been producing for decades. State data shows that it was pumping 21,400 barrels of oil per day in 2015, earning it the designation of being California’s eighth producing oil field. Output has actually been ticking upward annually since the OPUS system was put into place, with state data showing oil output in 2015 was nearly double production of 11,400 b/d recorded in 2008.

To counter natural production declines, the aging field has been using steam flooding since the 1960s to soften the remaining oil and coax it out of the ground.  During this process, large volumes of water rise to the surface that must later be treated and disposed of. In fact, for every barrel of oil produced in 2015, state data show about 15 barrels of water rose to the surface as well – or an average of 328,000 b/d of water per day.   

A case study by Veolia says, “Historically, a portion of this water had been recycled and softened to provide water for steam generation, with the (rest) going to local EPA class II injection wells for disposal. However, the injection zone capacity is limited and that had constrained full field development.”

That’s where to OPUS system comes in to make up the difference and ease water constraints. OPUS cleans up about 50,000 bb/d of water that using a multiple-treatment process that takes out contaminants and removes 92% of total dissolved solids.

With the treated water clean enough for reuse, the limited capacity of the injection wells becomes is less of a limiting factor in operations. The recycled water that is not used to generate steam is clean enough to meet California’s strict effluent discharge requirements and can be released through shallow wetlands into aquifer recharge basins that replenish water resources.

Veolia says the project goal was to reduce the total dissolved solids (TDS) of the feed water to less than 6,500 parts per million (pps), and the boron to less than 0.64 ppm for discharge, while achieving 75% water recovery across the treatment system and minimizing the volume of produced water. “For steam generation, the project goal was to reduce the feed water hardness to less than 2 ppm total hardness as CaCO3,” the case study said.

The system’s daily operations are overseen by Veolia, and Veolia staff also provides onsite and offsite technical and engineering support to troubleshoot issues as they arise. In short, they are responsible for ensuring that optimal function is maintained at the site.

The team displayed noteworthy ingenuity in 2005 and 2008 when a shortage of hydrochloric acid arose after powerful hurricanes pummeled the US Gulf Coast. OPUS uses hydrochloric acid in the regeneration process of the water softeners that are a part of the system. To get around this issue ad keep operations rolling, Veolia staff came up with a different concentration that lowered the field’s reliance on hydrochloric acid.

Indeed, the OPUS system is demonstrating one of the ways that producers can use technology and ingenuity to make their operations more environmentally responsible. To read the full case study on Veolia’s San Ardo project, click here. https://www.veolianorthamerica.com/en/case-studies/san-ardo-refinery

Southern California Refinery Case Study
PDF – 2.12 MB

 

Previous ArticleNext Article

Recommended Lighting Practices Collaboration 0

FORT DAVIS, Texas — The University of Texas at Austin’s McDonald Observatory has collaborated with the Permian Basin Petroleum Association (PBPA) and the Texas Oil and Gas Association (TXOGA) to reduce light shining into the sky from drilling rigs and related activities in West Texas. The excess light has the potential to drown out the light from stars and galaxies and threatens to reduce the effectiveness of the observatory’s research telescopes to study the mysteries of the universe.

“This partnership of PBPA and TXOGA with McDonald Observatory to protect dark skies in its vicinity is vital to the research of the universe taking place at McDonald,” said Taft Armandroff, director of the observatory.

The collaboration’s Recommended Lighting Practices document details best lighting practices for drilling rigs and other oilfield structures, including what types of lighting work best and how to reduce glare and improve visibility. These practices will increase the amount of light shining down on worksites, thus increasing safety while decreasing the amount of light pollution in the sky. Reducing excess light helps the observatory and also decreases electricity costs for the oil and gas producers.

The document specifically targets oil and gas operations in the seven counties with existing outdoor lighting ordinances surrounding the McDonald Observatory: Brewster, Culberson, Hudspeth, Jeff Davis, Pecos, Presidio and Reeves. However, the recommendations can be beneficial across the industry.

A new video that helps to introduce the recommendations to oil and gas companies is now available. It features the observatory’s Bill Wren explaining the importance of dark skies, and how lighting practices can both preserve dark skies and improve safety for oilfield workers. The video was produced with the support of the Apache Corporation, following the company’s extensive collaboration with observatory staff and implementation of these practices with their assets in the area. It is available to watch and share at: https://youtu.be/UnmwnO6CIR4

“For years, the PBPA and the McDonald Observatory have worked together on educating members of the Permian Basin oil and gas community about the Dark Skies Initiative and the possible impact lighting practices can have on the observatory’s work,” said PBPA President Ben Shepperd. “About two years ago, the PBPA board of directors agreed to support the creation of lighting recommendations. We decided a great way to educate members of the industry on how they could provide a positive impact on this issue was through the utilization of such recommended practices.

“So we began work with the observatory to publish recommended lighting practices and have since worked to educate our members and those outside the oil and gas industry on the recommendations through presentations, seminars, articles in magazines and newspapers, and even one-on-one conversations,” Shepperd said.

Recently, the Texas Oil and Gas Association joined the collaboration.

“The Texas Oil and Gas Association recognizes that production practices and protecting the environment are in no way mutually exclusive,” TXOGA President Todd Staples said. “The Recommended Lighting Practices collaborative effort allows for the oil and natural gas industry to continue the work vital to our economy and our future, and for the simultaneous reduction to our ecological footprint.”

In April, the observatory’s Dark Skies Initiative was named one of six Texan by Nature Conservation Wrangler projects for 2018. Texan by Nature, a Texas-led conservation nonprofit founded by former first lady Laura Bush, brings business and conservation together through select programs that engage Texans in the stewardship of land and communities.

The award will provide the observatory connections to technical expertise, industry support, publicity, and more for its Dark Skies Initiative.

“Our Conservation Wrangler program recognizes innovative and transformative conservation projects across the state of Texas,” said Joni Carswell, the organization’s executive director. “Each Conservation Wrangler project positively impacts people, prosperity and natural resources.”

— END —

Media Contacts:
Rebecca Johnson, Communications Manager
McDonald Observatory
The University of Texas at Austin
512-475-6763

Stephen Robertson, Executive VP
Permian Basin Petroleum Association
432-684-6345

Kate Zaykowski, Communications Director
Texas Oil and Gas Association
325-660-2274

Taylor Keys, Program Manager
Texan by Nature
512-284-7482

Castlen Kennedy, VP of Public Affairs
Apache Corporation
713-296-7189

Case Study: Large E&P Operator in Permian Basin Uses ZerO2 to Reduce Emissions, Capture Full Value of Production Stream 0

Situation

A multinational exploration and production company with significant operations in the Permian Basin needed a solution to continue developing its oil and gas assets in compliance with stringent emissions standards and without increasing lease operating costs or reducing economic returns. The operator’s area of operation covers over 100,000 net acres reaching from the city of Midland in west Texas to the border of New Mexico. The company recently told the market it plans to invest heavily in the Permian Basin by 2020 to grow production significantly. To achieve its growth plan, the operator required a solution to proactively handle emissions of Volatile Organic Compounds (VOCs) from tank vapor gas and Nitrogen Oxides (NOx) produced when VOCs are burned using flares or combustors. Importantly, the solution needed to have a minimal impact on operating costs and not require significant capital investment.

Solution

The operator turned to EcoVapor for a solution to handle its emissions of VOCs and reduce or eliminate NOx while avoiding any adverse impact to operations, cash flow or financial returns. EcoVapor applied its ZerO2 oxygen removal technology in a staged rollout covering an initial five production pads. Born from EcoVapor’s proprietary vapor recovery technology, its patented ZerO2 systems offer operational flexibility, modularity, and reliability. ZerO2 units can be all-electric, using existing lease power or gensets, are skid mounted and have a small 4’x4’ footprint so they can be installed on any production pad. With no moving parts, ZerO2 units are extremely reliable.

The ZerO2 rollout proceeded as follows:

  • September 2017. Three ZerO2 units installed and run in parallel on the first production pad, handling over 1.0 MMcf per day of flash gas.

  • October 2017. Three more ZerO2 units installed on second production pad handling 800 Mcf per day of flash gas.

  • December 2017. Three additional ZerO2 units installed on third production pad handling an initial 750 Mcf per day. Additional development drilling and turning more wells to production increased production and in April 2018, two more ZerO2 units were installed to process flash gas volumes of up to 1.5 MMcf per day.

  • July 2018. Six ZerO2 units were installed on a fourth production pad with the capacity to process an expected 1.8 MMcf per day of flash gas.

 

Results

The ZerO2 solution gave the operator a scalable, efficient and reliable method to process rising flash gas volumes generated from the continued development of its Permian Basin asset position.

The multiple operational, economic and regulatory benefits of implementing the ZerO2 solution are summarized below:• Eliminate the flaring or combusting of flash gas by capturing 100% of tank vapors, as compared to typical efficiency levels of 80% for competing solutions.

  • Easily achieve compliance with current emissions standards and even more stringent regulations likely to be introduced by federal and state regulators in the future.

  •  Reduce Reid Vapor Pressure (RVP) by flashing gas at atmospheric pressure and capturing it before the oil is transported.

  • Generate incremental revenue and profits by capturing and selling rich, high-value tank vapor gas previously lost by flaring or combusting.

  • Improve the quality of sales gas by removing oxygen from the gas stream and ensuring consistent, ongoing production and revenue by avoiding the triggering of slam valve safeguards.

  • Maintain operational reliability by adopting the ZerO2 units, which have no moving parts and minimizes the impact on unexpected maintenance and repair costs.

This table summarizes the estimated emissions reductions based on installations made to date. Emissions reductions are estimated based on an 80% efficiency rate generally attributed to Vapor Recovery Tower technology. To put the impact of the total estimated emissions reductions in perspective, the reduction in VOC emissions is equivalent to
removing approximately over 28,000 passenger vehicles from the nation’s roads for a year, using per-vehicle estimates from the EPA’s publication Average Annual Emissions and Fuel Consumption for Gasoline-Fueled Passenger Cars and Light Trucks.

Based on the successful applications of the ZerO2 solution, the operator requested that EcoVapor design a larger unit to handle greater volumes of flash gas expected to be produced by its Permian Basin growth plan. These new units can each process 1.2 MMcfd and will be deployed in the second half of 2018.

Contact us today at 1.844.NOFLARE (844.663.5273) or Info@EcoVaporRS.com to see if ZerO2 is right for your operations and if you’re ready to Flare Less, Sell More.

Case Study Permian Basin

 

Most Popular Topics

Editor Picks

Send this to a friend