Recommended Lighting Practices Collaboration 0

FORT DAVIS, Texas — The University of Texas at Austin’s McDonald Observatory has collaborated with the Permian Basin Petroleum Association (PBPA) and the Texas Oil and Gas Association (TXOGA) to reduce light shining into the sky from drilling rigs and related activities in West Texas. The excess light has the potential to drown out the light from stars and galaxies and threatens to reduce the effectiveness of the observatory’s research telescopes to study the mysteries of the universe.

“This partnership of PBPA and TXOGA with McDonald Observatory to protect dark skies in its vicinity is vital to the research of the universe taking place at McDonald,” said Taft Armandroff, director of the observatory.

The collaboration’s Recommended Lighting Practices document details best lighting practices for drilling rigs and other oilfield structures, including what types of lighting work best and how to reduce glare and improve visibility. These practices will increase the amount of light shining down on worksites, thus increasing safety while decreasing the amount of light pollution in the sky. Reducing excess light helps the observatory and also decreases electricity costs for the oil and gas producers.

The document specifically targets oil and gas operations in the seven counties with existing outdoor lighting ordinances surrounding the McDonald Observatory: Brewster, Culberson, Hudspeth, Jeff Davis, Pecos, Presidio and Reeves. However, the recommendations can be beneficial across the industry.

A new video that helps to introduce the recommendations to oil and gas companies is now available. It features the observatory’s Bill Wren explaining the importance of dark skies, and how lighting practices can both preserve dark skies and improve safety for oilfield workers. The video was produced with the support of the Apache Corporation, following the company’s extensive collaboration with observatory staff and implementation of these practices with their assets in the area. It is available to watch and share at: https://youtu.be/UnmwnO6CIR4

“For years, the PBPA and the McDonald Observatory have worked together on educating members of the Permian Basin oil and gas community about the Dark Skies Initiative and the possible impact lighting practices can have on the observatory’s work,” said PBPA President Ben Shepperd. “About two years ago, the PBPA board of directors agreed to support the creation of lighting recommendations. We decided a great way to educate members of the industry on how they could provide a positive impact on this issue was through the utilization of such recommended practices.

“So we began work with the observatory to publish recommended lighting practices and have since worked to educate our members and those outside the oil and gas industry on the recommendations through presentations, seminars, articles in magazines and newspapers, and even one-on-one conversations,” Shepperd said.

Recently, the Texas Oil and Gas Association joined the collaboration.

“The Texas Oil and Gas Association recognizes that production practices and protecting the environment are in no way mutually exclusive,” TXOGA President Todd Staples said. “The Recommended Lighting Practices collaborative effort allows for the oil and natural gas industry to continue the work vital to our economy and our future, and for the simultaneous reduction to our ecological footprint.”

In April, the observatory’s Dark Skies Initiative was named one of six Texan by Nature Conservation Wrangler projects for 2018. Texan by Nature, a Texas-led conservation nonprofit founded by former first lady Laura Bush, brings business and conservation together through select programs that engage Texans in the stewardship of land and communities.

The award will provide the observatory connections to technical expertise, industry support, publicity, and more for its Dark Skies Initiative.

“Our Conservation Wrangler program recognizes innovative and transformative conservation projects across the state of Texas,” said Joni Carswell, the organization’s executive director. “Each Conservation Wrangler project positively impacts people, prosperity and natural resources.”

— END —

Media Contacts:
Rebecca Johnson, Communications Manager
McDonald Observatory
The University of Texas at Austin
512-475-6763

Stephen Robertson, Executive VP
Permian Basin Petroleum Association
432-684-6345

Kate Zaykowski, Communications Director
Texas Oil and Gas Association
325-660-2274

Taylor Keys, Program Manager
Texan by Nature
512-284-7482

Castlen Kennedy, VP of Public Affairs
Apache Corporation
713-296-7189

Previous ArticleNext Article

BHGE unveils LUMEN 0

  • At its 20th Annual Meeting in Florence, BHGE makes the commitment to reduce CO2 equivalent emissions 50 percent by 2030 and achieve net zero by 2050

  • BHGE will support customers’ efforts to reduce the carbon footprint of their operations by investing in its portfolio of lower carbon products and services

  • New and future technologies launched at the annual event include LUMEN, which is both a wireless ground-based and aerial drone-based methane detection system; as well as a turbine powered 100 percent by hydrogen

  • BHGE’s Gaffney, Cline and Associates has launched its own Carbon Management Practice, the first oil and gas consultancy to offer a quantitative assessment of the carbon intensity of oil and gas assets, evaluation of carbon solutions and the accreditation of emission reductions

FLORENCE, ITALY — 28 January 2019 – On the first day of its 20th Annual Meeting in Florence, Italy, Baker Hughes, a GE company (NYSE: BHGE), announced its commitment to reduce its CO2 equivalent (eq.) emissions 50 percent by 2030,* achieving net-zero CO2 eq. emissions by 2050.  The company also said it will invest in its portfolio of advanced technologies to assist customers with reducing their carbon footprint.

Net Zero Carbon Emissions

BHGE has already achieved a 26 percent reduction in its emissions since 2012 through a commitment to new technology and operational efficiencies.  BHGE will continue to employ a broad range of emissions reduction initiatives across manufacturing, supply chain, logistics, energy sourcing and generation.  BHGE has established a global additive manufacturing technology network with a mission to bring commercial-scale production closer to customers, reducing transportation impact and associated emissions.

“Oil and gas will continue to be an important part of the global energy mix, and BHGE is committed to investing in smarter technologies to advance the energy industry for the long-term,” said Lorenzo Simonelli, chairman and CEO of BHGE. “Managing carbon emissions is an important strategic focus for our business.   We believe we have an important role to play as an industry leader and partner.  BHGE has a long legacy of pushing the boundaries of technology and operating efficiency. Today we take this to the next level by committing to ambitious new goals for ourselves, and to provide lower carbon solutions expected by customers and society.”

New Carbon Management Practice

To further industry and customer efforts to reduce carbon emissions, BHGE’s Gaffney, Cline and Associates has launched a new Carbon Management Practice. This is the first oil and gas consultancy to offer a quantitative assessment of carbon intensity, evaluation of carbon solutions and the accreditation of emission reductions. This new practice helps governments, energy companies and the financial community understand and solve energy transition issues related to oil and gas resources, assets and investments.

Technology Partner to Customers

At its Annual Meeting, BHGE announced new and existing technologies that support operators’ efforts to reduce their carbon footprint:  

  • LUMEN, a full-suite of methane monitoring and inspection solutions capable of streaming live data from sensors to a cloud-based software dashboard for real-time results.  The platform consists of two seamlessly connected formats – a ground-based solar-powered wireless sensor network, and a drone-based system for over-air monitoring, – ensuring methane emissions rates and concentration levels are monitored and located as efficiently and accurately as possible. This builds on BHGE’s extensive portfolio of remote inspection and sensing technologies.

  • An agreement with H2U, Australia’s leading Hydrogen infrastructure developer, to configure BHGE’s NovaLT gas turbine generator technology to operate 100 percent on hydrogen for the Port Lincoln Project, a green hydrogen power plant facility in South Australia.

The new technologies build on BHGE’s expanding lower-carbon technology portfolio, which includes:

  • Modular Gas Processing: Modular gas processing at Nassiriya and Al Gharraf oilfields in Iraq will recover 200 million standard cubic feet per day of flare gas, reducing emissions by 5.7 million metric tons per year of CO2 equivalent, and monetizing the recovered gas. The recovered gas will be processed into dry gas, liquefied petroleum gas for cooking, and condensate, and will support domestic power generation as well as exports. An additional net 3.9 million metric tons of CO2 eq. emissions reductions are possible annually if incremental power generation is fueled by natural gas, displacing oil.  Flare gas recovery and use represent one of the largest emission reduction opportunities in the global oil & industry.

  • LM9000 Gas Turbine: BHGE’s most advanced aero-derivative gas turbine, introduced in 2017, was designed to allow the LNG train startup in the pressurized condition without venting process gas.  Its flexible fuel technology reduces emissions while eliminating water use in emissions abatement.  The LM9000 delivers 50 percent longer maintenance interval, 20 percent more power and 40 percent lower NOx emissions, resulting in 20 percent lower cost of ownership for LNG customers.

  • Integrated Compressor LineThis high-efficiency offshore compressor operates with zero emissions. It is driven by a high-speed electric motor in a single sealed casing and its rotor is levitated by active magnetic bearings (AMBs), allowing exceptional efficiency and reliability.

  • flare.iQ: flare.IQ™ provides highly accurate, near-continuous control of downstream flare performance by optimizing combustion efficiency, allowing operators to reduce flaring-related emissions by up to 12,100 metric tons of CO2 equivalent per flare annually. If deployed globally, flare.iQ could reduce annual emissions by 190 million metric tons of CO2 eq.

  • NextSource Modular CO2 Capture:  NextSource converts thermal energy from rich burn Waukesha engine exhaust to provide low-cost CO2 for oil and gas consumers. In the process, each four-engine pad reduces emissions by 16,200 metric tons of CO2 equivalent annually or 60 percent compared to the no-capture scenario. In addition, because CO2 is captured near the well site, emissions are avoided from not having to transport liquid CO2 from a remote location to the well site.

Visit https://annualmeeting.bhge.com to learn more about the Florence event including the conference agenda and speakers guide, and where the full proceedings from the Annual Meeting will be shared at the close of the event.

**BHGE’s 2030 emissions reduction targets and performance are based on scope 1 & 2 emissions for 2017 and baseline year 2012, as reported to the Carbon Disclosure Project..

Quasar 2 – New Flare Stack Monitoring System 0

The new flare stack monitoring system from LumaSense Technologies is designed to monitor pilot flames and flared gases for elevated flare stacks. Additional applications include: Gas assist flares, Staged flares, and Offshore flares. Quasar 2 is available in “Basic” and “Advanced” models.

Safe flare operation and environmental protection require reliable and accurate flare pilot monitoring. Generally, all flare pilots are monitored with thermocouples. However, thermocouples fail due to thermal shock, extreme heat and vibrations during flaring events. The requirement for pilot monitoring beyond the normal life of pilot thermocouples has driven the market need for alternative methods and installation of redundant methods of pilot monitoring in addition standard pilot thermocouples. Regional flare governmental permitting rules driven by environmental protection, health and safety guidelines for global flare operation have had a large impact on the increasing market need for IR pilot monitoring systems.

The E²T Quasar 2 series are monitoring and detection instruments designed for continuous duty monitoring of pilot flame and flared gases from flares. The base system provides low-cost basic flare pilot monitoring capabilities. The advanced model has an intensity meter with 2 set points that allow monitoring of both the pilot and flaring status signals from the same unit. Additional add-on features are available for a configurable product to meet a wide range of client flare types, monitoring requirements and budget. High Resolution sight-through optical system and selection of various spot sizes enables the Quasar 2 system to be positioned as far as 1/4 mile (400 m) from the stack being monitored. Alignment on the target is accomplished through bead and notch aiming and signal amplitude in combination with a stable M-4 heavy duty swivel mount. Custom electronics adapt to target movement, varying luminosity and most climate conditions. The alarm delay circuit can be adjusted for a specific location or application, eliminating false alarms from temporary loss of signal due to intermittent flames, adverse weather and wind.

The system is complete with internal cooling base, air purge tube and swivel mount. An optional M-8 pedestal stand allows for easy stable system mounting. With over installations at over 550 petrochemical facilities worldwide, customers know they can trust LumaSense E²T line of petrochemical infrared sensors.

LumaSense Technologies, Inc.

Published on Aug 1, 2018

For more information, visit: https://info.lumasenseinc.com/q2

YouTube

Most Popular Topics

Editor Picks

Send this to a friend