Robo-Glove – Wearable technology that reduces the force needed to operate tools 0

Researchers at the NASA Johnson Space Center (JSC) in collaboration with General Motors (GM) have designed and developed Robo-Glove, a wearable human grasp assist device, to help reduce the grasping force needed by an individual to operate tools for an extended time or when performing tasks having repetitive motion. Robo-Glove has the potential to help workers, such as construction workers, hazardous material workers, or assembly line operators, whose job requires continuous grasping and ungrasping motion. The Robo-Glove also has potential applications in prosthetic devices, rehabilitation aids, and people with impaired or limited arm and hand muscle strength. This NASA Technology is available for your company to license and develop into a commercial product. NASA does not manufacture products for commercial sale.

Benefits

  • Wearable assist technology: a lightweight robotic glove that fits on your hand

  • Small and compact design

  • Human-safe robotics: pressure sensors give a sense of touch or haptic feedback

  • Self-contained glove: actuators, pressure sensors, and synthetic tendons are embedded

  • Ergonomic – the system helps reduce muscle strain from repetitive motion tasks

Applications

  • Construction

  • Hazardous material handling

  • Medical

  • Automotive Repair

  • Manufacturing

  • Repetitive motion work

  • Oil and gas exploration

The Technology

This technology is directed to the field of wearable robotics, where a machine's strength and a human's ability to see, feel, and think are combined to develop a more robust system than if each operates separately.
This technology is directed to the field of wearable robotics, where a machine’s strength and a human’s ability to see, feel, and think are combined to develop a more robust system than if each operates separately.

Originally developed by NASA and GM, the Robo-Glove technology was a spinoff of the Robonaut 2 (R2), the first humanoid robot in space. This wearable device allows the user to tightly grip tools and other items for longer periods of time without experiencing muscle discomfort or strain. An astronaut working in a pressurized suit outside the space station or an assembly operator in a factory might need to use 15 to 20 lbs of force to hold a tool during an operation. Use of the Robo-Glove, however, would potentially reduce the applied force to only 5 to 10 lbs.

The Robo-Glove is a self-contained unit, essentially a robot on your hand, with actuators embedded into the glove that provide grasping support to human fingers. The pressure sensors, similar to the sensors that give R2 its sense of touch, are incorporated into the fingertips of the glove to detect when the user is grasping an object. When the user grasps the object, the synthetic tendons automatically retract, pulling the fingers into a gripping position and holding them there until the sensor is released by releasing the object. The current prototype weighs around two pounds, including control electronics and a small display for programming and diagnostics. A lithium-ion battery, such as one for power tools, is used to power the system and is worn separately on the belt.

Johnson Space Center
2101 NASA Parkway
Houston, TX 77058

281.483.3809
jsc-techtran@mail.nasa.gov

Previous ArticleNext Article

Halliburton forms strategic agreement with Microsoft and Accenture to advance digital capabilities 0

HOUSTON – July 17, 2020  Halliburton (NYSE: HAL), Microsoft Corp. (Nasdaq: MSFT) and Accenture (NYSE: ACN) today announced they have entered into a five-year strategic agreement to advance Halliburton’s digital capabilities in Microsoft Azure.

Under the agreement, Halliburton will complete its move to cloud-based digital platforms and strengthen its customer offerings by:

  • Enhancing real-time platforms for expanded remote operations,

  • Improving analytics capability with the Halliburton Data Lake utilizing machine learning and artificial intelligence, and

  • Accelerating the deployment of new technology and applications, including SOC2 compliance for Halliburton’s overall system reliability and security.

Halliburton logo“The strategic agreement with Microsoft and Accenture is an important step in our adoption of new technology and applications to enhance our digital capabilities, drive additional business agility and reduce capital expenditures,” said Jeff Miller, Halliburton chairman, president & CEO. “We are excited about the benefits our customers and employees will realize through this agreement, and the opportunity to further leverage our open architecture approach to software delivery.”

“Moving to the cloud allows companies to create market-shaping customer offerings and drive tangible business outcomes,” said Judson Althoff, executive vice president, Microsoft’s Worldwide Commercial Business. “Through this alliance with Halliburton and Accenture, we will apply the power of the cloud to unlock digital capabilities that deliver benefits for Halliburton and its customers.”

Accenture logoThe agreement also enables the migration of all Halliburton physical data centers to Azure, which delivers enterprise-grade cloud services at global scale and offers sustainability benefits. Accenture will work closely with Microsoft, in conjunction with their Avanade joint venture, to help transition Halliburton’s digital capabilities and business-critical applications to Azure. Accenture will leverage its comprehensive cloud migration framework, which brings industrialized capabilities together with exclusive tools, methods, and automation to accelerate Halliburton’s data center migration and provide for additional transformation opportunities.

“Building a digital core and scaling it quickly across a business is only possible with a strong foundation in the cloud,” said Julie Sweet, chief executive officer, Accenture. “Halliburton recognizes that this essential foundation will provide the innovation, efficiency and talent advantages to do things differently and fast. We are proud to be part of driving this transformational change, which builds on our long history of working with Halliburton and Microsoft.”

The companies expect to complete the staged migration by 2022.

About Microsoft

Microsoft (Nasdaq “MSFT” @microsoft) enables digital transformation for the era of an intelligent cloud and an intelligent edge. Its mission is to empower every person and every organization on the planet to achieve more.

About Halliburton

Founded in 1919, Halliburton is one of the world’s largest providers of products and services to the energy industry. With approximately 50,000 employees, representing 140 nationalities in more than 80 countries, the company helps its customers maximize value throughout the lifecycle of the reservoir – from locating hydrocarbons and managing geological data, to drilling and formation evaluation, well construction and completion, and optimizing production throughout the life of the asset. Visit the company’s website at www.halliburton.com. Connect with Halliburton on FacebookTwitterLinkedInInstagram and YouTube.

About Accenture

Accenture is a leading global professional services company, providing a broad range of services in strategy and consulting, interactive, technology and operations, with digital capabilities across all of these services. We combine unmatched experience and specialized capabilities across more than 40 industries — powered by the world’s largest network of Advanced Technology and Intelligent Operations centers. With 513,000 people serving clients in more than 120 countries, Accenture brings continuous innovation to help clients improve their performance and create lasting value across their enterprises. Visit us at www.accenture.com.

For Microsoft

Microsoft Media Relations
WE Communications for Microsoft
(425) 638-7777
rrt@we-worldwide.com

For Halliburton

Investors:
Abu Zeya
Halliburton, Investor Relations
Investors@Halliburton.com
281-871-2633

Media:
Emily Mir
Halliburton, Public Relations
PR@Halliburton.com
281-871-2601

For Accenture
 Christian Harper
Accenture Media Relations
Christian.harper@acccenture.com
516-434-8615

Subsurface Data in the Oil and Gas Industry 0

Probing beneath the Earth’s surface for exploration and hazard mitigation

Drilling for oil and gas is expensive. A single well generally costs $5-8 million onshore and $100-200 million or more in deep water.1 To maximize the chances of drilling a productive well, oil and gas companies collect and study large amounts of information about the Earth’s subsurface both before and during drilling. Data are collected at a variety of scales, from regional (tens to hundreds of miles) to microscopic (such as tiny grains and cracks in the rocks being drilled). This information, much of which will have been acquired in earlier exploration efforts and preserved in public or private repositories, helps companies to find and produce more oil and gas and avoid drilling unproductive wells, but can also help to identify potential hazards such as earthquake-prone zones or areas of potential land subsidence and sinkhole formation.

Mapping the Subsurface 1: Regional Data from Geophysics

In the 21st century, much is already known about the distribution of rocks on Earth. When looking for new resources, oil and gas producers will use existing maps and subsurface data to identify an area for more detailed exploration. A number of geophysical techniques are then used to obtain more information about what lies beneath the surface. These methods include measurements of variations in the Earth’s gravity and magnetic field, but the most common technique is seismic imaging.

Seismic images are like an ultrasound for the Earth and provide detailed regional information about the structure of the subsurface, including buried faults, folds, salt domes, and the size, shape, and orientation of rock layers. They are collected by using truck-mounted vibrators or dynamite (onshore), or air guns towed by ships (offshore), to generate sound waves; these waves travel into the Earth and are reflected by underground rock layers; instruments at the surface record these reflected waves; and the recorded waves are mathematically processed to produce 2-D or 3-D images of subsurface features. These images, which cover many square miles and have a resolution of tens to hundreds of feet, help to pinpoint the areas most likely to contain oil and/or gas.

A typical setup for offshore seismic imaging. Image Credit: U.S. Bureau of Ocean Energy Management.2

Mapping the Subsurface 2: Local Data from Well Logs, Samples, and Cores

Drilling a small number of exploratory holes or using data from previously drilled wells (common in areas of existing oil and gas production) allows geologists to develop a much more complete map of the subsurface using well logs and cores:

  • well log is produced by lowering geophysical devices into a wellbore, before (and sometimes after) the steel well casing is inserted, to record the rock’s response to electrical currents and sound waves and measure the radioactive and electromagnetic properties of the rocks and their contained fluids.3 Well logs have been used for almost 100 years4 and are recorded in essentially all modern wells.

  • core is a cylindrical column of rock, commonly 3-4 inches in diameter, that is cut and extracted as a well is drilled. A core provides a small cross-section of the sequence of rocks being drilled through, providing more comprehensive information than the measurements made by tools inside the wellbore.5 Core analysis gives the most detailed information about the rock layers, faults and fractures, rock and fluid compositions, and how easily fluids (especially oil and gas) can flow through the rock and thus into the well.

By comparing the depth, thickness, and composition of subsurface rock formations in nearby wells, geoscientists can predict the location and productive potential of oil and gas deposits before drilling a new well. As a new well is being drilled, well logs and cores also help geoscientists and petroleum engineers to predict whether the rocks can produce enough oil or natural gas to justify the cost of preparing the well for production.7

A box containing 9 feet of 4-inch diameter core from the National Petroleum Reserve, Alaska, showing the fine-scale structure and composition of the rock layers being drilled. Image Source: U.S. Geological Survey.6

Data Preservation

Preservation of subsurface data is an ongoing challenge, both because there is so much of it and because a lot of older data predate computer storage. A modern seismic survey produces a few to thousands of terabytes of data;8 state and federal repositories collectively hold hundreds of miles of core;9 and millions of digital and paper records are housed at state geological surveys. For example, the Kansas Geological Society library maintains over 2.5 million digitized well logs and associated records for the state.10 Oil companies also retain huge stores of their own data. Preserving these data, which cost many millions of dollars to collect, allows them to be used in the future for a variety of purposes, some of which may not have been anticipated when the data were originally collected. For example, the shale formations that are now yielding large volumes of oil and natural gas in the United States were known but not considered for development for decades while conventional oil and gas resources were being extracted in many of the same areas. Archived well logs from these areas have helped many oil and gas producers to focus in on these shale resources now that the combination of hydraulic fracturing and horizontal drilling allow for their development.

Data for Hazard Mitigation

Oil and gas exploration is a major source of information about the subsurface that can be used to help identify geologic hazards:

  • Since 2013, the oil and gas industry has provided more than 2,500 square miles of seismic data to Louisiana universities to assist with research into the causes and effects of subsidence in coastal wetlands. For example, seismic and well data have been used to link faults to historic subsidence and wetland loss near Lake Boudreaux.11

  • To improve earthquake risk assessment and mitigation in metropolitan Los Angeles, scientists have used seismic and well data from the oil and gas industry to map out previously unidentified faults. This work was motivated by the 1994 Northridge earthquake, which occurred on an unknown fault that was not visible at the Earth’s surface.12

More Resources

U.S. Geological Survey – National Geological and Geophysical Data Preservation Program.

References

1 U.S. Energy Information Administration (2016). Trends in U.S. Oil and Natural Gas Upstream Costs.
2 Bureau of Ocean Energy Management – Record of Decision, Atlantic OCS Region Geological and Geophysical Activities.
3 Varhaug, M. (2016). Basic Well Log Interpretation. The Defining Series, Oilfield Review.
4 Schlumberger – 1920s: The First Well Log.
5 AAPGWiki – Overview of Routine Core Analysis.
6 Zihlman, F.N. et al. (2000). Selected Data from Fourteen Wildcat Wells in the National Petroleum Reserve in Alaska. USGS Open-File Report 00-200. Core from the well “East Simpson 2”, Image no. 0462077.
7 Society of Petroleum Engineers PetroWiki – Petrophysics.
8 “Big Data Growth Continues in Seismic Surveys.” K. Boman, Rigzone, September 2, 2015.
9 U.S. Geological Survey Core Research Center – Frequently Asked Questions.
10 Kansas Geological Society & Library – Oil and Gas Well Data.
11 Akintomide, A.O. and Dawers, N.H. (2016). Structure of the Northern Margin of the Terrebonne Trough, Southeastern Louisiana: Implications for Salt Withdrawal and Miocene to Holocene Fault Activity. Geological Society of America Abstracts with Programs, 48(7), Paper No. 244-2.
12 Shaw, J. and Shearer, P. (1999). An Elusive Blind-Thrust Fault Beneath Metropolitan Los Angeles. Science, 283, 1516-1518.

Date updated: 2018-06-01
Petroleum and the Environment, Part 23/24
Written by E. Allison and B. Mandler for AGI, 2018

Most Popular Topics

Editor Picks

Send this to a friend