Managing Oilfield Safety Culture for a Growing Workforce 0

It was not too long ago that layoffs were rampant in the oil patch; however, we are now in the middle of an upturn and the need for additional labor continues to increase. After your company has become accustomed to working with a small force, you may suddenly find yourself bursting at the seams with new (and returning) employees. This is not a time to send them all back to the field. Instead, it’s important to verify that their training is current to support your culture of safety.

Managing oilfield safety in your growing workforce requires a commitment to providing training to team members as needed, as well as ensuring that your policies and procedures are optimized for the sudden increase in demand. Taking the time to strengthen your existing policies and manuals, as well as improving the necessary tracking for safety training which may not be able to support the expanded workforce, are both key to preventing safety disasters. Here are some additional tips to help you manage safety when your employee numbers increase:

Oilfield Safety Culture

Have strong safety goals and values: Make sure your company’s commitment to safety is institutionalized in messaging. Everything you say and represent should communicate that your priorities are: nobody gets hurt, we protect the environment, and safety is our top concern.

Model basic principles: Make sure that you express, in writing and in attitude, the following beliefs:

  • Incidents are preventable;

  • Everyone is responsible for oilfield safety;

  • HSE performance is measured and managed;

  • Management is committed to safety;

  • The company always complies with rules and regulations.

Leadership: Prepare your management team to lead by example, and teach them to monitor their team’s performance, establish best practices for their division (which support those of the company), and emphasize the importance of open communication. Their team members need to know that they can ask any questions and should report any hazard or risk they encounter. Make reporting of any violations, risks, and hazards an expected part of a leader’s job.

SOPs: Provide SOPs to new employees, as well as revised SOPs to current employees. Periodic inspections of company locations help to ensure procedures are followed, and site visits help to create open communication and a culture of accepting changes and suggestions for SOPs by individuals working at the job sites.

Oilfield Safety Skills

Training: Adequate training is perhaps the best way to manage oilfield safety, especially in preventing incidents. Develop a plan to train employees based on job description and working conditions. Provide thorough certification requirements, and provide ample opportunities for team members to add additional certifications. A fully trained workforce is a safer workforce. To maintain a skilled staff, provide for on-site continued training and coaching to improve performance, and be sure to ask for training feedback. It is also essential to have a program in place to automatically notify safety managers on a regular basis of upcoming safety training expirations. This prevents employees with expired safety training from slipping through the cracks and allows for proactive planning of training and coaching.

Equipment: In an industry where large, dangerous, and extensive equipment is used regularly, safety standards must include proper handling of equipment. The following are important parts of an equipment safety plan:

  • A clear maintenance program to prevent breakdowns and accidents;

  • Procedures on dangerous equipment;

  • A quality control program;

  • A tracking system to monitor repairs, replacements and expirations.

Documentation: In this heavily-regulated industry, it is imperative that you record everything; from policy and procedure changes, violations, and training processes, this ensures that not only does your team have access to all crucial information to perform their best, but risk is reduced and improvements can be made based on the data collected. Safety software like Phoenix’s Safety module allows for quick and accurate documentation, as all information is stored on the cloud, providing access to forms and results from any device. Exported reports provide management with evidence of the company’s commitment to oilfield safety success.

Oilfield Safety Reviews

Audits/Reviews: Audits are an important part of a successful safety plan. To tackle the list of audits and reviews important to your team, create a schedule. This provides for adequate time to review assessments, create an improvement plan, and review conditions or employee actions which could be dangerous to health or to the environment. Further, scheduling meetings with department and team managers allows them the opportunity to bring their own assessments for a complete safety picture within each department and enables them to participate in improvements.

Emergency Procedures: Emergencies happen and it is crucial in a growing company to have a written response plan, including identifying team members qualified to respond to incidences (roles, responsibilities, authority). Especially important in a business covering a large geographic area, it is important to indicate available local resources. Finally, to strengthen your company’s culture of safety, have policies and procedure for reporting emergencies to regulatory agencies.

Risk Assessment: Regular assessment of risks helps to identify vulnerabilities, as well as to correct them quickly. Identify and document all risks and potential hazards, and implement procedures with tools to reduce them quickly. A SWOT analysis (Strengths, Weaknesses, Opportunities, and Threats) is a proven method to tackle this. Create measures necessary to reduce accident incidences. By monitoring on a continual basis, patterns can be identified and adjustments made to manage (and improve) oilfield safety.

Incident Notification and Investigation procedures: As mentioned above, this is a regulated industry, with multiple agencies requiring a variety of notifications. Having standards for notification and investigations prevents a lack of accurate notifications, and means less scrambling if an investigation is necessary. Recording near-miss incidents also helps to improve compliance.

These steps will help you prepare for the increase of employees you may be experiencing, or are expecting. The sooner you strengthen your oilfield safety processes and procedures, the safer and more productive your team will be. Online safety management software can not only improve your training program, but electronic records (certifications of people and equipment, records of violations, and fillable forms for reporting) reduce human error. It also serves to minimize the time needed to complete reporting and assessments. Once a thorough plan is in place, an annual review of your plan may be all that is necessary to ensure your safety procedures are followed and reliable.

This article is reprinted with permission from Oildex.

Case Study: Learn how M&M Pipeline Services improved compliance with safety testing and management using Phoenix DAS modules.

Previous ArticleNext Article

Recommended Lighting Practices Collaboration 0

FORT DAVIS, Texas — The University of Texas at Austin’s McDonald Observatory has collaborated with the Permian Basin Petroleum Association (PBPA) and the Texas Oil and Gas Association (TXOGA) to reduce light shining into the sky from drilling rigs and related activities in West Texas. The excess light has the potential to drown out the light from stars and galaxies and threatens to reduce the effectiveness of the observatory’s research telescopes to study the mysteries of the universe.

“This partnership of PBPA and TXOGA with McDonald Observatory to protect dark skies in its vicinity is vital to the research of the universe taking place at McDonald,” said Taft Armandroff, director of the observatory.

The collaboration’s Recommended Lighting Practices document details best lighting practices for drilling rigs and other oilfield structures, including what types of lighting work best and how to reduce glare and improve visibility. These practices will increase the amount of light shining down on worksites, thus increasing safety while decreasing the amount of light pollution in the sky. Reducing excess light helps the observatory and also decreases electricity costs for the oil and gas producers.

The document specifically targets oil and gas operations in the seven counties with existing outdoor lighting ordinances surrounding the McDonald Observatory: Brewster, Culberson, Hudspeth, Jeff Davis, Pecos, Presidio and Reeves. However, the recommendations can be beneficial across the industry.

A new video that helps to introduce the recommendations to oil and gas companies is now available. It features the observatory’s Bill Wren explaining the importance of dark skies, and how lighting practices can both preserve dark skies and improve safety for oilfield workers. The video was produced with the support of the Apache Corporation, following the company’s extensive collaboration with observatory staff and implementation of these practices with their assets in the area. It is available to watch and share at: https://youtu.be/UnmwnO6CIR4

“For years, the PBPA and the McDonald Observatory have worked together on educating members of the Permian Basin oil and gas community about the Dark Skies Initiative and the possible impact lighting practices can have on the observatory’s work,” said PBPA President Ben Shepperd. “About two years ago, the PBPA board of directors agreed to support the creation of lighting recommendations. We decided a great way to educate members of the industry on how they could provide a positive impact on this issue was through the utilization of such recommended practices.

“So we began work with the observatory to publish recommended lighting practices and have since worked to educate our members and those outside the oil and gas industry on the recommendations through presentations, seminars, articles in magazines and newspapers, and even one-on-one conversations,” Shepperd said.

Recently, the Texas Oil and Gas Association joined the collaboration.

“The Texas Oil and Gas Association recognizes that production practices and protecting the environment are in no way mutually exclusive,” TXOGA President Todd Staples said. “The Recommended Lighting Practices collaborative effort allows for the oil and natural gas industry to continue the work vital to our economy and our future, and for the simultaneous reduction to our ecological footprint.”

In April, the observatory’s Dark Skies Initiative was named one of six Texan by Nature Conservation Wrangler projects for 2018. Texan by Nature, a Texas-led conservation nonprofit founded by former first lady Laura Bush, brings business and conservation together through select programs that engage Texans in the stewardship of land and communities.

The award will provide the observatory connections to technical expertise, industry support, publicity, and more for its Dark Skies Initiative.

“Our Conservation Wrangler program recognizes innovative and transformative conservation projects across the state of Texas,” said Joni Carswell, the organization’s executive director. “Each Conservation Wrangler project positively impacts people, prosperity and natural resources.”

— END —

Media Contacts:
Rebecca Johnson, Communications Manager
McDonald Observatory
The University of Texas at Austin
512-475-6763

Stephen Robertson, Executive VP
Permian Basin Petroleum Association
432-684-6345

Kate Zaykowski, Communications Director
Texas Oil and Gas Association
325-660-2274

Taylor Keys, Program Manager
Texan by Nature
512-284-7482

Castlen Kennedy, VP of Public Affairs
Apache Corporation
713-296-7189

Case Study: Large E&P Operator in Permian Basin Uses ZerO2 to Reduce Emissions, Capture Full Value of Production Stream 0

Situation

A multinational exploration and production company with significant operations in the Permian Basin needed a solution to continue developing its oil and gas assets in compliance with stringent emissions standards and without increasing lease operating costs or reducing economic returns. The operator’s area of operation covers over 100,000 net acres reaching from the city of Midland in west Texas to the border of New Mexico. The company recently told the market it plans to invest heavily in the Permian Basin by 2020 to grow production significantly. To achieve its growth plan, the operator required a solution to proactively handle emissions of Volatile Organic Compounds (VOCs) from tank vapor gas and Nitrogen Oxides (NOx) produced when VOCs are burned using flares or combustors. Importantly, the solution needed to have a minimal impact on operating costs and not require significant capital investment.

Solution

The operator turned to EcoVapor for a solution to handle its emissions of VOCs and reduce or eliminate NOx while avoiding any adverse impact to operations, cash flow or financial returns. EcoVapor applied its ZerO2 oxygen removal technology in a staged rollout covering an initial five production pads. Born from EcoVapor’s proprietary vapor recovery technology, its patented ZerO2 systems offer operational flexibility, modularity, and reliability. ZerO2 units can be all-electric, using existing lease power or gensets, are skid mounted and have a small 4’x4’ footprint so they can be installed on any production pad. With no moving parts, ZerO2 units are extremely reliable.

The ZerO2 rollout proceeded as follows:

  • September 2017. Three ZerO2 units installed and run in parallel on the first production pad, handling over 1.0 MMcf per day of flash gas.

  • October 2017. Three more ZerO2 units installed on second production pad handling 800 Mcf per day of flash gas.

  • December 2017. Three additional ZerO2 units installed on third production pad handling an initial 750 Mcf per day. Additional development drilling and turning more wells to production increased production and in April 2018, two more ZerO2 units were installed to process flash gas volumes of up to 1.5 MMcf per day.

  • July 2018. Six ZerO2 units were installed on a fourth production pad with the capacity to process an expected 1.8 MMcf per day of flash gas.

 

Results

The ZerO2 solution gave the operator a scalable, efficient and reliable method to process rising flash gas volumes generated from the continued development of its Permian Basin asset position.

The multiple operational, economic and regulatory benefits of implementing the ZerO2 solution are summarized below:• Eliminate the flaring or combusting of flash gas by capturing 100% of tank vapors, as compared to typical efficiency levels of 80% for competing solutions.

  • Easily achieve compliance with current emissions standards and even more stringent regulations likely to be introduced by federal and state regulators in the future.

  •  Reduce Reid Vapor Pressure (RVP) by flashing gas at atmospheric pressure and capturing it before the oil is transported.

  • Generate incremental revenue and profits by capturing and selling rich, high-value tank vapor gas previously lost by flaring or combusting.

  • Improve the quality of sales gas by removing oxygen from the gas stream and ensuring consistent, ongoing production and revenue by avoiding the triggering of slam valve safeguards.

  • Maintain operational reliability by adopting the ZerO2 units, which have no moving parts and minimizes the impact on unexpected maintenance and repair costs.

This table summarizes the estimated emissions reductions based on installations made to date. Emissions reductions are estimated based on an 80% efficiency rate generally attributed to Vapor Recovery Tower technology. To put the impact of the total estimated emissions reductions in perspective, the reduction in VOC emissions is equivalent to
removing approximately over 28,000 passenger vehicles from the nation’s roads for a year, using per-vehicle estimates from the EPA’s publication Average Annual Emissions and Fuel Consumption for Gasoline-Fueled Passenger Cars and Light Trucks.

Based on the successful applications of the ZerO2 solution, the operator requested that EcoVapor design a larger unit to handle greater volumes of flash gas expected to be produced by its Permian Basin growth plan. These new units can each process 1.2 MMcfd and will be deployed in the second half of 2018.

Contact us today at 1.844.NOFLARE (844.663.5273) or Info@EcoVaporRS.com to see if ZerO2 is right for your operations and if you’re ready to Flare Less, Sell More.

Case Study Permian Basin

 

Study: Filtration a Viable Option for Produced Water from the Marcellus Shale 0

The rising production of natural gas from hydraulically fractured wells in Appalachia generates along with it contaminated produced water that must be carefully disposed of. Researchers at Pennsylvania State University say that producers would be wise to consider the environmental risks associated with the most commonly used disposal practice of underground injection, and instead adopt more environmentally friendly and sustainable innovations in water filtration.

The study, Sustainability in Marcellus Shale Development, published by Penn State’s College of Engineering in conjunction with Chevron, notes that produced and flowback water from the prolific Marcellus Shale in Pennsylvania is most commonly disposed of through injection into saltwater injection wells drilled far below the deepest known aquifer.

But although this method is the cheapest available and most frequently used, it brings with it the potential for surface spills and casing leaks that can contaminate freshwater, as well as the risk of activating dormant faults and causing earthquakes.

Disposing Fracked Water

“During the hydraulic fracturing process, water and chemicals are used to stimulate the fissures in the rock in order to extract the natural gas. Water is mixed with sand and other chemicals and then injected into the well. After creating cracks in the Marcellus Shale, flowback water, a brine solution with heavy metals and chemicals, quickly comes back. Typically, this flowback water is stored in tanks or pits before treatment, recycling, or disposal,” according to the report, co-written by Kyle Bambu, Mike Spero, and Harry Polychronopoulos.

The most common way to dispose of this produced water is by pumping it into saltwater disposal wells that are drilled hundreds below the deepest known aquifers. But Pennsylvania’s unique geology is not well suited for such wells. At the time the study was published in Fall 2016, there were 144,000 Class II injection wells in the US and only eight of them were Class II salt water disposal wells in Pennsylvania. These eight wells combined accepted 8,667 barrels per day of brine, while similar wells operated in Texas can each dispose of more than 26,000 b/d of brine.

According to the report, the average cost to dispose of one bbl of fluid can range from as low as 25¢/bbl if the oil company operates its own disposal well, to anywhere from 50¢/bbl to $2.50/bbl if a commercial saltwater disposal well is used. The cost of using disposal is further increased by the cost of transportation.

“In northern Pennsylvania, where commercial disposal wells aren’t plentiful, the brine water may have to be transported to Ohio or West Virginia. This can increase costs by $4.00 to $6.00 a barrel, bringing the net cost of disposal in the Marcellus Shale region to $4.50/bbl to $8.50/bbl,” the study said.

The use of underground disposal wells is not without risk, and frequent concerns include the potential for groundwater contamination and induced seismic activity. In Youngstown, Ohio, the researchers noted that a Class II disposal well for fracking wastewater was linked to seismic activity after it activated a previously unknown fault line. That well was blamed for 10 minor earthquakes, the largest of which is a magnitude of 3.9. A spate of earthquakes in Oklahoma in recent years has likewise been linked to the increased injection of water into disposal wells.

The need to dispose of produced water in Pennsylvania has become more pressing in recent years as natural gas production from the prolific Marcellus and neighboring Utica shales has taken off.  Data from the federal Energy Information (EIA) Administration show that output from the shale formations more than tripled Appalachian gas production from 7.8 billion cubic feet per day in 2012 to 23.8 Bcf/d in 2017 (EIA). These plays are credited for driving growth in US natural gas production since 2012 and have played a critical role in enabling low domestic prices and increasing exports.

The Water Filtration Alternative

Researchers note that a number of alternatives to disposal wells are emerging at varying levels of cost. These largely involve treating the produced water to remove its various contaminants, which can include radioactive substances, heavy metals, and high concentrations of salt. Traditional wastewater treatment plants cannot be used because they lack the sufficient processes needed to clean this water.

The most cost competitive alternative to underground injection highlighted by researchers is the option of using a membrane to clean the brine produced water. The company Oasys Water offers a system that drives the brine solution through a series of semi-permeable membranes at a cost of nearly $2/bbl of water. The water that emerges from this process is clean enough to be discharged into streams or drainage systems.

Other potential treatments on the horizon that require further research include the option of boiling the water. However, researchers note that the cost of using this process can run upwards of $17/bbl and the heavy salt causes extreme wear and tear to the requisite industrial boilers, resulting in massive equipment replacement costs.

Lastly, the study says the process of electrodialysis could be used to separate water from contaminants. Researchers at the Massachusetts Institute of Technology have found that an electrical current can be used to separate fresh water from a salty solution. Salt is an effective conductor of electricity and successive stages of electrodialysis can remove most contaminates. But this process has not been tested in the oil and gas industry and there are not commercial treatment options available.

Researchers ultimately concluded that while the common practice of injecting produced water into disposal wells is relatively cheap, this practice comes with high environmental risks. These risks include the potential for groundwater contamination that is caused by surface spills or breaks in the tubing for saltwater disposal wells and even induced seismic activity.

At present, the impetus for improving produced water disposal practices is driven primarily by the sustainability practices of each producer and not government regulations. Researchers found that the oil and gas industry is exempt from some of the most stringent federal environmental regulations, like the Safe Drinking Water Act the Clean Water Act, but noted that states have been working to impose their own rules to address areas of concern. For instance, Pennsylvania in recent years adopted new guidelines intended to prevent spills and releases of harmful substances.

Today’s Best Option

The study ultimately recommends Oasys Water’s membrane filtration as the best option for disposing of produced water today. Researchers said that while using this method can result in slightly higher costs for water treatment and transportation, it appears to be the most sustainable solution until other technological advances are advanced in the future.

“This (membrane) system was recommended because of its relatively cheap cost yet adherence to sustainability and environmentally friendly concerns,” the study said.

To read a PDF of the Penn State study, click here.

Most Popular Topics

Editor Picks

Send this to a friend